. 設l為平面上過點(0,l)的直線,l的斜率等可能地取、、0、、,用ξ表示坐標原點到直線l的距離,則隨機變量ξ的數(shù)學期望Eξ=_________.
   ∵直線l的方程分別為:y =x +1、y =x +1、y =x +1、y = 1、y =x+1、y =x+1、y =x+1,∴原點到它們的距離分別為、、1、、所以隨機變量ξ的分布列為:
ξ



1
P




 
所以Eξ=×+×+×+×1=
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)袋中裝有35個球,每個球上都標有1到35的一個號碼,設號碼為n的球重克,這些球等可能地從袋中被取出.
(1)如果任取1球,試求其重量大于號碼數(shù)的概率;
(2)如果不放回任意取出2球,試求它們重量相等的概率;
(3)如果取出一球,當它的重量大于號碼數(shù),則放回,攪拌均勻后重;當它的重量小于號碼數(shù)時,則停止取球.按照以上規(guī)則,最多取球3次,設停止之前取球次數(shù)為,求E.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

10件產(chǎn)品,其中3件是次品,任取兩件,若表示取到次品的個數(shù),則等于(  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

同時拋擲枚均勻的硬幣次,設枚硬幣正好出現(xiàn)枚正面向上,枚反面向上的次數(shù)為,則的數(shù)學期望是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某班同學利用節(jié)假日進行社會實踐,在25~ 55歲的人群中隨機抽取n人進行了一次關于生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念,則稱為“低碳族”.根據(jù)調(diào)查結果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

(I)補全頻率分布直方圖并求n,a,p的值;
(Ⅱ)從[40,50)歲年齡段的“低碳族”中采用分層抽樣法抽取18人參加戶外低碳體驗活動,其中選取3人作為領隊,記選取的3名領隊中年齡在[40,45)歲年齡段的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)某公司向市場投放三種新型產(chǎn)品,經(jīng)調(diào)查發(fā)現(xiàn)第一種產(chǎn)品受歡迎的概率為,第二、第三種產(chǎn)品受歡迎的概率分別為,且不同種產(chǎn)品是否受歡迎相互獨立.記為公司向市場投放三種新型產(chǎn)品受歡迎的數(shù)量,其分布列為

0
1
2
3





 
(Ⅰ)求的值
(Ⅱ)求數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)某單位為了提高員工素質,舉辦了一場跳繩比賽,其中男員工12人,女員工18人,其成績編成如圖所示的莖葉圖(單位:分),分數(shù)在175分以上(含175分)者定為“運動健將”,并給予特別獎勵,其他人員則給予“運動積極分子”稱號.

⑴ 若用分層抽樣的方法從“運動健將”和“運動積極分子”中抽取10人,然后再從這10人中選4人,求至少有1人是“運動健將”的概率;
⑵ 若從所有“運動健將”中選3名代表,用表示所選代表中女“運動健將”的人數(shù),試寫出的分布列,并求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

袋中有6個同樣大小的球,編號為1,2,3,4,5,6,現(xiàn)從中隨機取出3個球,以X表示取出球的最小號碼,則X的數(shù)學期望 E(X)= _______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知隨機變量的分布列為下表所示:

1
3
5
P
0.4
0.1

的標準差為(    )
A.3.56             B.           C.3.2              D.

查看答案和解析>>

同步練習冊答案