已知某企業(yè)上半年前5個月產(chǎn)品廣告投入與利潤額統(tǒng)計如下:
月份12345
廣告投入(x萬元)9.59.39.18.99.7
利潤(y萬元)9289898793
由此所得回歸方程為y=7.5x+a,若6月份廣告投入10(萬元)估計所獲利潤為( 。
A、95.25萬元
B、96.5萬元
C、97萬元
D、97.25萬元
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:首先求出x,y的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù),根據(jù)樣本中心點滿足線性回歸方程,代入已知數(shù)據(jù)求出a的值,寫出線性回歸方程.當自變量取10時,把10代入線性回歸方程,求出所獲利潤.
解答: 解:由題意,
.
x
=
1
5
(9.5+9.3+9.1+8.9+9.7)=9.3,
.
y
=
1
5
(92+89+89+87+93)=90,
將(9.3,90)代入y=7.5x+a,可得a=20.25,
∴x=10時,y=75+20.25=95.25.
故選:A.
點評:本題考查回歸分析的初步應(yīng)用,考查求線性回歸方程,考查預(yù)報y的值,是一個綜合題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)和g(x),設(shè)α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α,β,使得|α-β|≤1,則稱f(x)與g(x)互為“零點關(guān)聯(lián)函數(shù)”.若函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點關(guān)聯(lián)函數(shù)”,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD的三視圖如圖所示,則此四棱錐的四個側(cè)面的面積中最大的是( 。
A、3
B、
13
C、3
2
D、
3
2
17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|5-|2x-3|∈N*},則集合A的非空真子集數(shù)為( 。
A、14B、512
C、511D、510

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)的定義域為R,對任意x∈R,有f(x+2)=f(x),當x∈[0,1]時,f(x)=-x+1.則函數(shù)g(x)=log6|x|-f(x)的零點的個數(shù)是( 。
A、6個B、8個
C、10個D、12個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)
1-3i
1-i
的共軛復(fù)數(shù)為( 。
A、2+iB、2-i
C、-1+iD、-1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x-1
4x+1
,若x1>0,x2>0,且f(x1)+f(x2)=1,則f(x1+x2)的最小值為( 。
A、
1
4
B、
4
5
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復(fù)數(shù)z=x+yi(x,y∈R),且z2=8i(i是虛數(shù)單位),則z=( 。
A、2+2i
B、-2+2i或-2-2i
C、-2-2i
D、2+2i或-2-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=ax2-lnx
(1)求f(x)的單調(diào)區(qū)間;
(2)當a=
1
8
時,證明:方程f(x)=f(
2
3
)在區(qū)間(2,+∞)內(nèi)有唯一解.

查看答案和解析>>

同步練習冊答案