2.已知點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,表示的平面區(qū)域上運(yùn)動,則z=x-y的取值范圍是( 。
A.[1,2]B.[-2,1]C.[-2,-1]D.[-1,2]

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=x-y,得y=x-z表示,斜率為1縱截距為-z的一組平行直線,
平移直線y=x-z,當(dāng)直線y=x-z經(jīng)過點(diǎn)B時(shí),直線y=x-z的截距最小,此時(shí)z最大,
當(dāng)直線經(jīng)過點(diǎn)C時(shí),此時(shí)直線y=x-z截距最大,z最。
由$\left\{\begin{array}{l}{x=2}\\{x+2y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即B(2,0),此時(shí)zmax=2.
由$\left\{\begin{array}{l}{y-1=0}\\{x+2y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即C(0,1),此時(shí)zmin=0-1=-1.
∴-1≤z≤2,
故選:D.

點(diǎn)評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用z的幾何意義是解決線性規(guī)劃問題的關(guān)鍵,注意利用數(shù)形結(jié)合來解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.根據(jù)下列條件,求圓的方程:
(1)圓心在直線y=-4x上,且與直線l:x+y-1=0相切與點(diǎn)P(3,-2);
(2)已知圓和y軸相切,圓心在直線x-3y=0上,且被直線y=x解得弦長為$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知t為實(shí)數(shù),函數(shù)f(x)=2loga(2x+t-2),g(x)=logax,其中0<a<1.
(1)若函數(shù)y=g(ax+1)-kx是偶函數(shù),求實(shí)數(shù)k的值;
(2)當(dāng)x∈[1,4]時(shí),f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設(shè)t=4,當(dāng)x∈[m,n]時(shí),函數(shù)y=|f(x)|的值域?yàn)閇0,2],若n-m的最小值為$\frac{1}{6}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,PB⊥AB且AD=AB=BP=$\frac{1}{2}$BC.
(1)求證:CD⊥平面PBD;
(2)已知點(diǎn)Q在PC上,若AC與BD交于點(diǎn)O,且AP∥平面BDQ,求證:OQ∥平面APD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出S的值是(  )
A.10B.12C.100D.102

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,則a20等于(  )
A.7B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點(diǎn)F作該雙曲線一條漸近線的垂線交此漸近線于點(diǎn)M,若O為坐標(biāo)原點(diǎn),△OFM的面積是$\frac{1}{2}{a^2}$,則該雙曲線的離心率是(  )
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為45°,若E是PB的中點(diǎn),則異面直線DE與PA所成角的余弦值為( 。
A.$\frac{{3\sqrt{10}}}{20}$B.$\frac{{\sqrt{10}}}{20}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|0<x<2},B={x|x2-1≤0},那么A∪B=( 。
A.{x|0<x≤1}B.{x|-1≤x<2}C.{x|-1≤x<0}D.{x|1≤x<2}

查看答案和解析>>

同步練習(xí)冊答案