【題目】已知函數(shù)其中為實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩個(gè)不同的點(diǎn).

(1)指出函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的圖象在點(diǎn),處的切線互相平行,求的最小值;

(3)若函數(shù)的圖象在點(diǎn),處的切線重合,求的取值范圍.(只要求寫出答案).

【答案】(1)遞增區(qū)間為,的遞減區(qū)間為.(2)(3)

【解析】

1)根據(jù)二次函數(shù)和對(duì)數(shù)函數(shù)單調(diào)性即可得到函數(shù)的單調(diào)區(qū)間;(2)根據(jù)切線平行可知;根據(jù)函數(shù)導(dǎo)函數(shù)的單調(diào)性可知分屬兩段不同區(qū)間;設(shè),則,得到切線斜率,將化為,由基本不等式可求得最小值;(3)由切線重合得到斜率相等,得到,進(jìn)而得到;根據(jù)切線重合,寫出切線方程后可知方程相同,得到等式;令,,利用導(dǎo)數(shù)可得函數(shù)的單調(diào)性,從而得到的值域,從而得到的范圍.

1)當(dāng)時(shí),

上單調(diào)遞減;在上單調(diào)遞增

當(dāng)時(shí),,在上單調(diào)遞增

綜上所述:的單調(diào)遞增區(qū)間為:,;單調(diào)遞減區(qū)間為:

(2)設(shè)處的切線斜率為,處的切線斜率為

,處的切線互相平行

當(dāng)時(shí),,在上單調(diào)遞增

當(dāng)時(shí),,在上單調(diào)遞減

不能同時(shí)屬于,也不能同時(shí)屬于

不妨設(shè),則 ,

,即:

(當(dāng)且僅當(dāng),即時(shí)取等號(hào))

3)若切線重合,則,由(2)知:

,即

在點(diǎn)處的切線為:

在點(diǎn)處的切線為:

切線重合 切線方程相同,整理可得:

設(shè),,則

時(shí), 上單調(diào)遞減

時(shí),;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市調(diào)查機(jī)構(gòu)在某設(shè)置過街天橋的路口隨機(jī)調(diào)查了110人準(zhǔn)備過馬路的交通參與者對(duì)跨越護(hù)欄和走過街天橋的看法,得到如下列聯(lián)表:

合計(jì)

走過街天橋

40

20

60

跨越護(hù)欄

20

30

50

合計(jì)

60

50

110

附:.

0.050

0.010

0.001

K

3.841

6.635

10.828

則可以得到正確的結(jié)論是( )

A.有99%以上的把握認(rèn)為“選擇過馬路的方式與性別有關(guān)”

B.有99%以上的把握認(rèn)為“選擇過馬路的方式與性別無關(guān)”

C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別有關(guān)”

D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐PABC中,ACBC,ACBC2,PAPBPC3,OAB中點(diǎn),EPB中點(diǎn).

1)證明:平面PAB⊥平面ABC

2)求點(diǎn)B到平面OEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長為.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

)設(shè)直線、的斜率分別為、,證明;

)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.

1:甲套設(shè)備的樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

1

5

18

19

6

1

1:乙套設(shè)備的樣本的頻率分布直方圖

1)根據(jù)表1和圖1,通過計(jì)算合格率對(duì)兩套設(shè)備的優(yōu)劣進(jìn)行比較;

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān).

甲套設(shè)備

乙套設(shè)備

合計(jì)

合格品

不合格品

合計(jì)

附:

0.15

0.10

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分13分已知函數(shù)。

當(dāng)時(shí)求曲線處切線的斜率;

的單調(diào)區(qū)間;

當(dāng)時(shí),在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面平面的中點(diǎn),.

(1)求二面角的大;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1),求的單調(diào)區(qū)間;

(2)若當(dāng)時(shí)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為(a1x+y+a+3=0,(aR).

1)若直線l在兩坐標(biāo)軸上截距的絕對(duì)值相等,求直線l的方程;

2)若直線l不經(jīng)過第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案