函數(shù)f(x)=loga(x-1)(a>0且a≠1)的圖象必經(jīng)過定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
 
考點(diǎn):對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令x-1=1,求得x=2,f(x)=0,從而求得點(diǎn)P的坐標(biāo).
解答: 解:根據(jù)函數(shù)y=logax的圖象經(jīng)過點(diǎn)(1,0),
對于函數(shù)f(x)=loga(x-1),令x-1=1,求得x=2,且f(2)=0,
可得點(diǎn)P的坐標(biāo)為(2,0),
故答案為:(2,0).
點(diǎn)評(píng):本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C在y軸右側(cè),C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都等于1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)有兩個(gè)頂點(diǎn)在直線x+2y-2=0上
(1)求橢圓C的方程;
(2)當(dāng)直線l:y=x+m與橢圓C相交時(shí),求m的取值范圍;
(3)設(shè)直線l:y=x+m與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若以為AB直徑的圓過原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為考查某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下丟失數(shù)據(jù)的列聯(lián)表:
患病 未患病 總計(jì)
沒服用藥 20 30 50
服用藥 x y 50
總計(jì) M N 100
設(shè)從沒服用藥的動(dòng)物中任取兩只,未患病數(shù)為x;從服用藥物的動(dòng)物中任取兩只,未患病數(shù)為y,工作人員曾計(jì)算過P(x=0)=
38
9
•p(y=0).
(1)求出列聯(lián)表中數(shù)據(jù)x,y,M,N的值;
(2)能夠以99%的把握認(rèn)為藥物有效嗎?參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d;
    ①當(dāng)K2≥3.841時(shí)有95%的把握認(rèn)為ξ、η有關(guān)聯(lián);
    ②當(dāng)K2≥6.635時(shí)有99%的把握認(rèn)為ξ、η有關(guān)聯(lián).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y=x2+2與y=3x所圍成的平面圖形的面積
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)集合A={x|
mx-1
x
<0}
,B={x|log
1
2
x>1}
;命題p:實(shí)數(shù)m為小于6的正整數(shù),命題q:A是B成立的必要不充分條件,若命題p∧q是真命題,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示程序框圖,若輸入x=4,則輸出y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個(gè)三角形的三邊長,且a=b},則(a,b,c)∈M所對應(yīng)的f(x)的零點(diǎn)的取值集合為
 

(2)若a,b,c是△ABC的三邊長,則下列結(jié)論正確的是
 
(寫出所有正確結(jié)論的序號(hào)).
①對于區(qū)間(-∞,1)內(nèi)的任意x,總有f(x)>0成立;
②存在實(shí)數(shù)x,使得ax,bx,cx不能同時(shí)成為任意一個(gè)三角形的三條邊長;
③若
CA
CB
<0,則存在實(shí)數(shù)x∈(1,2),使f(x)=0.(提示:
AB
=
CB
-
CA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖如圖:如果上述程序運(yùn)行的結(jié)果為S=132,那么判斷框中應(yīng)填入
 
;

查看答案和解析>>

同步練習(xí)冊答案