【題目】已知 是定義在 上的可導函數(shù) 的導數(shù),對任意 ,且 ,且 ,都有 , , ,則下列結論錯誤的是(
A. 的增區(qū)間為
B. =3處取極小值,在 =-1處取極大值??
C. 有3個零點
D. 無最大值也無最小值

【答案】C
【解析】由x≠3且x≠-1, ,知 ,當 時, ,∴ ,
當-1<x<3時, ,
的增區(qū)間為 , ,減區(qū)間為 ;故A結論正確;
因為 ,由 的草圖知 恰有一個零點,C結論錯誤;
的草圖可知 無最大值也無最小值,故D結論錯誤,故錯誤的結論為C。
【考點精析】掌握函數(shù)的極值與導數(shù)和函數(shù)的最大(小)值與導數(shù)是解答本題的根本,需要知道求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a ,a∈R. (Ⅰ)討論f(x)的單調區(qū)間;
(Ⅱ)當x≠1時, 恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個函數(shù)中,在定義域上不是單調函數(shù)的是(
A.y=﹣2x+1
B.y=
C.y=lgx
D.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

附:回歸直線的斜率和截距的最小二乘估計公式分別為:
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測該地區(qū)2017年農(nóng)村居民家庭人均純收入.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年中國(云南賽區(qū))三對三籃球聯(lián)賽在昆明市體育局的大力支持下,圓滿順利結束.組織方統(tǒng)計了來自 , , , 球隊的男子的平均身高與本次比賽的平均得分,如下表所示:

球隊

平均身高 (單位:

170

174

176

181

179

平均得分 (單位:分)

62

64

66

70

68


(1)根據(jù)表中數(shù)據(jù),求 關于 的線性回歸方程(系數(shù)精確到 );
(2)若 隊平均身高為 ,根據(jù)(1)中所求得的回歸方程,預測 隊的平均得分.(精確到個位) 注:回歸方程 中斜率和截距最小二乘估計公式分別為
, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—5:不等式選講
已知 = ).
(Ⅰ)當 時,解不等式
(Ⅱ)若不等式 恒成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,an= ,n=2,3,4,….
(1)求a2 , a3 , a4 , a5的值;
(2)設bn= +1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
(3)對任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項構成等差數(shù)列?若存在,寫出這2m項,并證明這2m項構成等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足 ,若n∈N*時,anbn+1﹣bn+1=nbn
(Ⅰ)求{bn}的通項公式;
(Ⅱ)設cn=anbn , 求{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,F(xiàn)1 , F2分別是橢圓C: =1(a>b>0)的左、右焦點,且焦距為2 ,動弦AB平行于x軸,且|F1A|+|F1B|=4.

(1)求橢圓C的方程;
(2)若點P是橢圓C上異于點 、A,B的任意一點,且直線PA、PB分別與y軸交于點M、N,若MF2、NF2的斜率分別為k1、k2 , 求證:k1k2是定值.

查看答案和解析>>

同步練習冊答案