【題目】如圖,動(dòng)點(diǎn)P在正方體ABCD﹣A1B1C1D1的對角線BD1上.過點(diǎn)P作垂直于平面BB1D1D的直線,與正方體表面相交于M,N.設(shè)BP=x,MN=y,則函數(shù)y=f(x)的圖象大致是(
A.
B.
C.
D.

【答案】B
【解析】解:設(shè)正方體的棱長為1,顯然,當(dāng)P移動(dòng)到對角線BD1的中點(diǎn)O時(shí),函數(shù) 取得唯一最大值,所以排除A、C;

當(dāng)P在BO上時(shí),分別過M、N、P作底面的垂線,垂足分別為M1、N1、P1,

則y=MN=M1N1=2BP1=2xcos∠D1BD=2 是一次函數(shù),所以排除D.

故選B.

【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均不為0的等差數(shù)列{an}前n項(xiàng)和為Sn , 滿足S4=2a5 , a1a2=a4 , 數(shù)列{bn}滿足bn+1=2bn , b1=2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinx﹣xcosx(x≥0).
(1)求函數(shù)f(x)的圖象在 處的切線方程;
(2)若任意x∈[0,+∞),不等式f(x)<ax3恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)m=f(x)dx, ,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)圓心角為直角的扇形AOB 花草房,半徑為1,點(diǎn)P 是花草房弧上一個(gè)動(dòng)點(diǎn),不含端點(diǎn),現(xiàn)打算在扇形BOP 內(nèi)種花,PQ⊥OA,垂足為Q,PQ 將扇形AOP 分成左右兩部分,在PQ 左側(cè)部分三角形POQ 為觀賞區(qū),在PQ 右側(cè)部分種草,已知種花的單位面積的造價(jià)為3a,種草的單位面積的造價(jià)為2a,其中a 為正常數(shù),設(shè)∠AOP=θ,種花的造價(jià)與種草的造價(jià)的和稱為總造價(jià),不計(jì)觀賞區(qū)的造價(jià),設(shè)總造價(jià)為f(θ)

(1)求f(θ)關(guān)于θ 的函數(shù)關(guān)系式;
(2)求當(dāng)θ 為何值時(shí),總造價(jià)最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y2=2px(p>0)的準(zhǔn)線l與x軸交于點(diǎn)M,過M的直線與拋物線交于A,B兩點(diǎn).設(shè)A(x1 , y1)到準(zhǔn)線l的距離為d,且d=λp(λ>0).
(1)若y1=d=1,求拋物線的標(biāo)準(zhǔn)方程;
(2)若 = ,求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是半徑為2的半球O的直徑,P,D為球面上的兩點(diǎn)且∠DAB=∠PAB=60°,
(1)求證:平面PAB⊥平面DAB;
(2)求二面角B﹣AP﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列選項(xiàng)中,錯(cuò)誤的是(
A.若p為真,則¬(¬p)也為真
B.若“p∧q為真”,則“p∨q為真”為真命題
C.x∈R,使得tanx=2017
D.“2x ”是“l(fā)og x<0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動(dòng)點(diǎn)P在以點(diǎn)C為圓心,且與直線BD相切的圓內(nèi)運(yùn)動(dòng),設(shè) (α,β∈R),則α+β的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinx.若存在x1 , x2 , ,xm滿足0≤x1<x2<<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|++|f(xm1)﹣f(xm)|=12(m≥2,m∈N*),則m的最小值為

查看答案和解析>>

同步練習(xí)冊答案