球面上有三點(diǎn)A、B、C,任意兩點(diǎn)之間的球面距離都等于球大圓周長(zhǎng)的四分之一,且|AB|=
2
,則此球的體積為(  )
分析:根據(jù)球面上有三點(diǎn)A、B、C,任意兩點(diǎn)之間的球面距離都等于球大圓周長(zhǎng)的四分之一,可得OA,OB,OC兩兩垂直,利用|AB|=2,求出球的半徑,從而可得球的體積
解答:解:∵球面上有三點(diǎn)A、B、C,任意兩點(diǎn)之間的球面距離都等于球大圓周長(zhǎng)的四分之一,
∴OA,OB,OC兩兩垂直
設(shè)球心為O,球的半徑為R,則
∵|AB|=2
R=
2

∴此球的體積為
4
3
π×(
2
)3
=
8
2
3
π

故選B.
點(diǎn)評(píng):本題考查學(xué)生的空間想象能力,以及對(duì)球的性質(zhì)認(rèn)識(shí)及利用,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

球O球面上有三點(diǎn)A、B、C,已知AB=18,BC=24,AC=30,且球半徑是球心O到平面ABC的距離的2倍,求球O的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

表面積為16π的球面上有三點(diǎn)A、B、C,∠ACB=60°,AB=
3
,則球心到截面ABC的距離及B、C兩點(diǎn)間球面距離最大值分別為(  )
A、3,
3
B、
3
,
π
3
C、
3
,
3
D、3,
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為1的球面上有三點(diǎn)A、B、C,其中AB=1,BC=
3
,A、C兩點(diǎn)間的球面距離為
π
2
,則球心到平面ABC的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球面上有三點(diǎn)A、B、C,此三點(diǎn)構(gòu)成一個(gè)邊長(zhǎng)為l的等邊三角形,球心到平面ABC的距離等于球半徑
1
3
,則球半徑是
6
4
6
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為1的球面上有三點(diǎn)A,B,C,若A和B,A和C,B和C的球面距離都是
π
2
,過(guò)A、B、C三點(diǎn)做截面,則球心到面的距離為
3
3
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案