已知tanα=
1
3
.求
1-2sinαcosα
(2cos2α-1)(1-tanα)
的值.
考點(diǎn):二倍角的余弦,三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:利用同角三角函數(shù)的基本關(guān)系式化簡所求的表達(dá)式,然后代入已知條件求解即可.
解答: 解:∵tanα=
1
3

1-2sinαcosα
(2cos2α-1)(1-tanα)
=
(sinα-cosα)2cosα
(cos2α-sin2α)(cosα-sinα)
=
cosα
cosα+sinα
=
1
1+tanα
=
1
1+
1
3
=
3
4

故答案為:
3
4
點(diǎn)評:本題考查三角函數(shù)的化簡求值,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x(x+4),x≥0
x(x-4),x<0
,則f(x)的奇偶性為( 。
A、奇函數(shù)
B、偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=1,b=0.35,c=50.3,則下列不等式中正確的是( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列給出的函數(shù):(1)y=
x
;(2)y=
1
x2
;(3)y=x2+x中,冪函數(shù)的個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα、sinβ是方程x2-(
2
cos20°)x+cos220°-
1
2
=0的兩根,其中α、β都是銳角,且α>β,求α、β的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=(m-3)xm,則下列關(guān)于f(x)的說法不正確的是(  )
A、f(x)的圖象過原點(diǎn)
B、f(x)的圖象關(guān)于原點(diǎn)對稱
C、f(x)的圖象關(guān)于y軸對稱
D、f(x)=x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos390°=( 。
A、
3
2
B、
2
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|2<x<7},B={x|3≤x<10},A∩B=( 。
A、(2,10)
B、[3,7)
C、(2,3]
D、(7,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x的準(zhǔn)線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)相交于A、B兩點(diǎn),雙曲線的一條漸近線方程是y=
4
3
3
x,點(diǎn)F是拋物線的焦點(diǎn),且△FAB是等邊三角形,則該雙曲線的標(biāo)準(zhǔn)方程是(  )
A、
x2
36
-
y2
6
=1
B、
x2
16
-
y2
3
=1
C、
x2
6
-
y2
32
=1
D、
x2
3
-
y2
16
=1

查看答案和解析>>

同步練習(xí)冊答案