2.已知兩點F1(-5,0),F(xiàn)2(5,0),到它們的距離的差的絕對值是6的點M的軌跡是以F1(-5,0),F(xiàn)2(5,0),為焦點,以實軸長為6的雙曲線.

分析 由雙曲線的定義判斷出動點的軌跡,即可得出結(jié)論.

解答 解:根據(jù)雙曲線的定義知:M的軌跡是以F1(-5,0),F(xiàn)2(5,0),為焦點,以實軸長為6的雙曲線.
故答案為:以F1(-5,0),F(xiàn)2(5,0),為焦點,以實軸長為6的雙曲線.

點評 本題主要考查了雙曲線的標準方程,考查雙曲線的定義,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+6)=f(x)+f(3),且f(1)=2,則f(2015)的值為( 。
A.0B.-2C.2D.2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知點P(sin$\frac{5π}{4}$,cos$\frac{3π}{4}$)落在角θ的終邊上,且θ∈[0,2π),則θ是第三象限角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某同學上學途中必須經(jīng)過A,B,C,D四個交通崗,其中在A,B崗遇到紅燈的概率均為$\frac{1}{2}$,在C,D崗遇到紅燈的概率均為$\frac{1}{3}$.假設(shè)他在4個交通崗遇到紅燈的事件是相互獨立的,X表示他遇到紅燈的次數(shù).
(1)若X≥3,就會遲到,求張華不遲到的概率;
(2)求X的分布列及EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=1-$\frac{1}{a_n}$,則a2016等于( 。
A.$\frac{1}{2}$B.-1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某福彩中心準備發(fā)行一種面值為2元的福利彩票刮刮卡,設(shè)計方案如下:
①該福利彩票中獎概率為0.2;
②每張中獎彩票的中獎獎金有5元,10元和100元三種;
③顧客購買一張彩票,獲得10元獎金的概率為0.08,獲得100元獎金的概率為p.
(1)若某顧客每天都買一張該類型的福利彩票,求其在第3天才中獎的概率;
(2)福彩中心為了能夠籌得資金資助福利事業(yè)持續(xù)發(fā)展,應(yīng)如何設(shè)定P的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知直線l1∥l2,A是l1,l2之間的一個交點,并且A點到l1,l2的距離分別為1,2,B是直線l2上一動點,作AC⊥AB且使AC與直線l1交于點C,則△ABC的面積最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{-x}+1,x≤0}\end{array}\right.$,則f(1)+f(log3$\frac{1}{2}$)的值是( 。
A.5B.3C.-1D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè) a=$\frac{l{n}^{2}6}{4}$,b=ln2•ln3,c=$\frac{l{n}^{2}π}{4}$則a,b,c的大小順序為b<a<c.

查看答案和解析>>

同步練習冊答案