13.已知F為雙曲線C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1左焦點(diǎn),過拋物線y2=20x的焦點(diǎn)的直線交雙曲線C的右支于P,Q兩點(diǎn),若線段PQ的長(zhǎng)等于雙曲線C虛軸長(zhǎng)的3倍,則△PQF的周長(zhǎng)為( 。
A.40B.42C.44D.52

分析 根據(jù)題意畫出雙曲線圖象,然后根據(jù)雙曲線的定義“到兩定點(diǎn)的距離之差為定值2a“解決,求出周長(zhǎng)即可.

解答 解:根據(jù)題意,雙曲線C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的左焦點(diǎn)F(-5,0),所以點(diǎn)A(5,0)是雙曲線的右焦點(diǎn),
虛軸長(zhǎng)為:8;a=4,
雙曲線圖象如圖:|PQ|=|QA|+PA|=6b=18,
|PF|-|AP|=2a=8 ①
|QF|-|QA|=2a=8 ②
得:|PF|+|QF|=16+|PA|+|QA|=34,
∴周長(zhǎng)為:|PF|+|QF|+|PQ|=52,
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的定義,通過對(duì)定義的考查,求出周長(zhǎng),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+1,}&{x<1}\\{{2}^{x}-2,}&{x≥1}\end{array}\right.$,g(x)=$\frac{1}{x}$,若對(duì)任意x∈[m,+∞)(m>0),總存在兩個(gè)x0∈[0,2],使得f(x0)=g(x),則實(shí)數(shù)m的取值范圍是( 。
A.[1,+∞)B.(0,1]C.[$\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.拋物線M:y2=ax的焦點(diǎn)F(1,0),過點(diǎn)K(-1,0)的直線l與M相交于A、B兩點(diǎn).
(Ⅰ)求kAF+kBF的值;
(Ⅱ)求直線l的斜率k的取值范圍,使點(diǎn)F落在以AB為直徑的圓外.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四邊形ABCD中,∠BAD=90°,AD∥BC,PE⊥平面ABCD,E在AD上,F(xiàn)D∥PE,BC=AE=PE,DE=DF=$\frac{1}{2}$BC.
(Ⅰ)求證:AB⊥EF;
(Ⅱ)求證:CF∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓心為(3,4)的圓N被直線x=1截得的弦長(zhǎng)為2$\sqrt{5}$.
(1)求圓N的方程;
(2)點(diǎn)B(3,-2)與點(diǎn)C關(guān)于直線x=-1對(duì)稱,求以C為圓心且與圓N外切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x)=f(x+4),且當(dāng)x∈[-2,0]時(shí),$f(x)={(\frac{1}{2})^x}-1$,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有三個(gè)不同的實(shí)數(shù)根,則a的取值范圍為( 。
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知變量x,y滿足條件$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+2y-9≤0\end{array}\right.$則x+3y的最大值是(  )
A.4B.8C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知菱形ABCD如圖(1)所示,其中∠ACD=60°,AB=2,AC與BD相交于點(diǎn)O,現(xiàn)沿AC進(jìn)行翻折,使得平面ACD⊥平面ABC,取點(diǎn)E,連接AE,BE,CE,DE,使得線段BE再平面ABC內(nèi)的投影落在線段OB上,得到的圖形如圖(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)證明:DE⊥AC;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={x∈R|x>0},B={x∈R|x2≤1},則A∩B=( 。
A.(0,1)B.(0,1]C.[-1,1]D.[-1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案