正方體ABCD-A1B1C1D1,E,F(xiàn)分別是AA1,AB的中點,O是B1D1的中點,則EF,OB所成的角是( 。
A、30°B、45°
C、60°D、90°
考點:異面直線及其所成的角
專題:計算題,空間位置關(guān)系與距離,空間角
分析:連接A1B,A1O,運用中位線定理,即可得∠OBA1或補(bǔ)角即為異面直線EF,OB所成的角,設(shè)正方體的邊長為2,求出三角形OBA1的三邊,即可得到所求的角.
解答: 解:連接A1B,A1O,
由于E,F(xiàn)分別是AA1,AB的中點,
則EF∥A1B,
即有∠OBA1或補(bǔ)角即為異面直線EF,OB所成的角,
設(shè)正方體的邊長為2,則A1B=2
2
,A1O=
2
,
在直角三角形BB1O中,則有BO=
BB12+B1O2
=
4+2
=
6
,
則有A1O2+BO2=A1B2,即有∠BOA1=90°,
sin∠OBA1=
2
2
2
=
1
2
,
則∠OBA1=30°.
故選A.
點評:本題考查異面直線所成的角的求法,考查定義法求角的方法,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題p:x2-4mx+1=0有實數(shù)解,命題q:?x0∈R,使得mx02-2x0-1>0成立.
(1)若命題p為真命題,求實數(shù)m的取值范圍;
(2)若命題?p∨?q為真命題,且命題p∨q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為2x±3y=0,且點P(-3,2
2
)在雙曲線上,則雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)10x+y=6是函數(shù)f(x)=x3-2x2-9x+a(x>
1
2
)的一條切線,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在x∈(0,+∞)上是增函數(shù)的是(  )
A、y=x2-2x+3
B、y=2-x
C、y=x+
1
x
D、y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx-
a
x
(a∈R)
(1)若a<0且f(x)在[1,e]的最小值為
3
2
,求a的值;
(2)若f(x)<x2在(1,+∞)上恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,點(1,0,2)關(guān)于坐標(biāo)原點的對稱點是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sinx,cosx+sinx),
b
=(
3
cosx,sinx-cosx),定義f(x)=
a
b

(1)求函數(shù)f(x)的周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)的最大值及取得最大值時的x的取值集合;
(3)若函數(shù)y=2sin2x-1的圖象向右平移m個單位(|m|<
π
2
),向上平移n個單位后得到函數(shù)y=f(x)的圖象,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a≠b,c=
3
,cos2A-cos2B=
3
sinAcosA-
3
sinBcosB
(1)求角C的大;
(2)若sinA=
4
5
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案