(本小題滿分14分)
已知數(shù)列的前項(xiàng)和為,且 N.
(1) 求數(shù)列的通項(xiàng)公式;
(2)若是三個(gè)互不相等的正整數(shù),且成等差數(shù)列,試判斷
是否成等比數(shù)列?并說(shuō)明理由.
(1)(2)不是等比數(shù)列,假設(shè)成等比數(shù)列,則, 即,
化簡(jiǎn)得:. (*) ∵,∴,這與(*)式矛盾,故假設(shè)不成立
【解析】
試題分析:(1) 解:,
∴ 當(dāng)時(shí),有 解得 .
由, ①
得, ②
② - ①得: . ③
以下提供兩種方法:
法1:由③式得:,
即;
,
∵,
∴數(shù)列是以4為首項(xiàng),2為公比的等比數(shù)列.
∴,即.
當(dāng)時(shí), ,
又也滿足上式,
∴.
法2:由③式得:,
得. ④
當(dāng)時(shí),, ⑤
⑤-④得:.
由,得,
∴.
∴數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列. ∴.
(2)解:∵成等差數(shù)列,
∴.
假設(shè)成等比數(shù)列,
則,
即,
化簡(jiǎn)得:. (*)
∵,
∴,這與(*)式矛盾,故假設(shè)不成立.……13分
∴不是等比數(shù)列.
考點(diǎn):數(shù)列的通項(xiàng)公式、數(shù)列的前項(xiàng)和
點(diǎn)評(píng):本題需要構(gòu)造新數(shù)列,難度很大,求解中用到的關(guān)系式
第二問(wèn)中的反證法的應(yīng)用比綜合法分析法更簡(jiǎn)單實(shí)用;本題還考查了合情推理、化歸與轉(zhuǎn)化、特殊與一般的數(shù)學(xué)思想方法,以及抽象概括能力、推理論證能力、運(yùn)算求解能力
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com