22.已知函數(shù)=
+
有如下性質(zhì):如果常數(shù)
>0,那么該函數(shù)在
0,
上是減函數(shù),
在,+∞
上是增函數(shù).
(1)如果函數(shù)=
+
(
>0)的值域為
6,+∞
,求
的值;
(2)研究函數(shù)=
+
(常數(shù)
>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)=
+
和
=
+
(常數(shù)
>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)
=
+
(
是正整數(shù))在區(qū)間[
,2]上的最大值和最小值(可利用你的研究結(jié)論).
解:
(1)易知,時,
。
(2)=
+
是偶函數(shù)。易知,該函數(shù)在
上是減函數(shù),在
上是增函數(shù); 則該函數(shù)在
上是減函數(shù),在
上是增函數(shù)。
(3)推廣:函數(shù),當(dāng)
為奇數(shù)時,
,
是減函數(shù);
,
是增函數(shù)。
,
是增函數(shù);
,
是減函數(shù)。
當(dāng)為偶數(shù)時,
,
是減函數(shù);
,
是增函數(shù)。
,
是減函數(shù);
,
是增函數(shù)。
=
+
當(dāng)時,
。
∴,
是減函數(shù);
,
是增函數(shù)。
∵
∴函數(shù)=
+
在區(qū)間[
,2]上的最大值為
,最小值為
。
科目:高中數(shù)學(xué) 來源: 題型:
(06年上海卷理)(18分)
已知函數(shù)=
+
有如下性質(zhì):如果常數(shù)
>0,那么該函數(shù)在
0,
上是減函數(shù),在
,+∞
上是增函數(shù).
(1)如果函數(shù)=
+
(
>0)的值域為
6,+∞
,求
的值;
(2)研究函數(shù)=
+
(常數(shù)
>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)=
+
和
=
+
(常數(shù)
>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)
=
+
(
是正整數(shù))在區(qū)間[
,2]上的最大值和最小值(可利用你的研究結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆內(nèi)蒙古赤峰市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)=
+
有如下性質(zhì):如果常數(shù)
>0,那么該函數(shù)在
0,
上是減函數(shù),在
,+∞
上是增函數(shù).
(Ⅰ)如果函數(shù)=
+
(
>0)的值域為
6,+∞
,求
的值;
(Ⅱ)研究函數(shù)=
+
(常數(shù)
>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(Ⅲ)對函數(shù)=
+
和
=
+
(常數(shù)
>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)
(
是正整數(shù))在區(qū)間[
,2]上的最大值和最小值(可利用你的研究結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三數(shù)學(xué)10月單元練習(xí)(函數(shù)二) 題型:解答題
(本小題滿分14分)已知函數(shù)=
+
有如下性質(zhì):如果常數(shù)
>0,那么該
函數(shù)在0,
上是減函數(shù),在
,+∞
上是增函數(shù).
(1)如果函數(shù)=
+
(
>0)的值域為
6,+∞
,求
的值;
(2)研究函數(shù)=
+
(常數(shù)
>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)=
+
和
=
+
(常數(shù)
>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)=
+
(
是正整數(shù))在區(qū)間[
,2]上的最大值和最小值(可利用你
的研究結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)=
+
有如下性質(zhì):如果常數(shù)
>0,那么該函數(shù)在
0,
上是減函數(shù),在
,+∞
上是增函數(shù).
(1)如果函數(shù)=
+
(
>0)的值域為
6,+∞
,求
的值;
(2)研究函數(shù)=
+
(常數(shù)
>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)=
+
和
=
+
(常數(shù)
>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)
=
+
(
是正整數(shù))在區(qū)間[
,2]上的最大值和最小值(可利用你的研究結(jié)論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com