定義F(x,y)=(1+x)y,其中x,y∈(0,+∞).
(1)令函數(shù)f(x)=F(1,log2(x3+ax2+bx+1)),其圖象為曲線C,若存在實(shí)數(shù)b使得曲線C在x(-4<x<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍;
(2)令函數(shù)g(x)=F(1,log2[(lnx-1)ex+x]),是否存在實(shí)數(shù)x∈[1,e],使曲線y=g(x)在點(diǎn)x=x處的切線與y軸垂直?若存在,求出x的值;若不存在,請說明理由.
(3)當(dāng)x,y∈N,且x<y時(shí),求證:F(x,y)>F(y,x).
【答案】分析:(1)先求出f(x)的解析式,設(shè)曲線C在x(-4<x<-1)處有斜率為-8的切線,建立等式,根據(jù)log2(x3+ax2+bx+1)>0消去b得-2-ax-8<0,使得2x2+ax+8>0 在-4<x<-1有解,求出a的取值范圍即可;
(2)先求g′(x)=(+lnx-1)ex+1,令h(x)=+lnx-1,然后利用導(dǎo)數(shù)研究h(x)在區(qū)間[1,e]上的最小值,從而求出g′(x)的取值范圍,曲線y=g(x)在點(diǎn)x=x處的切線與y軸垂直等價(jià)于方程g′(x)=0有實(shí)數(shù)解,而g′(x)>0,即方程g′(x)=0無實(shí)數(shù)解,從而得到結(jié)論;
(3)令h(x)=,x≥1,則h′(x)=,令p(x)=-ln(1+x),x≥0,利用導(dǎo)數(shù)研究p(x)在[0,+∞)上的單調(diào)性,從而得到函數(shù)h(x)在[1,+∞)上的單調(diào)性,即可證得結(jié)論.
解答:解:(1)f(x)=F(1,log2(x3+ax2+bx+1))=x3+ax2+bx+1,
設(shè)曲線C在x(-4<x<-1)處有斜率為-8的切線,
又由題設(shè)知log2(x3+ax2+bx+1)>0,f′(x)=3x2+2ax+b,3x2+2ax+b=-8  ①
∴存在實(shí)數(shù)b使得-4<x<-1       ②有解,(3分)
x3+ax2+bx>0  ③
由①得b=-8-3-2ax,代入③得-2-ax-8<0,
∴由   2x2+ax+8>0 在-4<x<-1有解,
得2×(-4)2+a×(-4)+8>0或2×(-1)2+a×(-1)+8>0,
∴a<10或a<10,∴a<10、(5分)
(2)∵g(x)=(lnx-1)ex+x,
∴g′(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=+(lnx-1)ex+1=(+lnx-1)ex+1.(6分)
設(shè)h(x)=+lnx-1、則h′(x)=-+=,
當(dāng)x∈[1,e]時(shí),h′(x)≥0.
h(x)為增函數(shù),因此h(x)在區(qū)間[1,e]上的最小值為ln1=0,即+lnx-1≥0.
當(dāng)x∈[1,e]時(shí),ex>0,+lnx-1≥0,
∴g′(x)=(+lnx-1)ex+1≥1>0.(8分)
曲線y=g(x)在點(diǎn)x=x處的切線與y軸垂直等價(jià)于方程g′(x)=0有實(shí)數(shù)解,
而g′(x)>0,即方程g′(x)=0無實(shí)數(shù)解.
故不存在實(shí)數(shù)x∈[1,e],使曲線y=g(x)在點(diǎn)x=x處的切線與y軸垂直.(9分)
(3)證明:令h(x)=,x≥1,由h′(x)=,
又令p(x)=-ln(1+x),x≥0,
∴p′(x)=-=≤0,
∴p(x)在[0,+∞)上單調(diào)遞減,
∴當(dāng)x>0時(shí),有p(x)<p(0)=0,
∴當(dāng)x≥1時(shí),有h′(x)<0,
∴h(x)在[1,+∞)上單調(diào)遞減,(11分)
∴當(dāng)1≤x<y時(shí),有,
∴yln(1+x)>xln(1+y),∴(1+x)y>(1+y)x
∴當(dāng)x,y∈N?,且x<y時(shí),F(xiàn)(x,y)>F(y,x).(13分)
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,同時(shí)考查了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M是△ABC內(nèi)的一點(diǎn)(不含邊界),且
AB
AC
=2
3
,∠BAC=30°,若△MBC,△MCA和△MAB的面積分別為x,y,z.
(1)x+y+z=
 
;
(2)定義f(x,y,z)=
1
x
+
4
y
+
9
z
,則f(x,y,z)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C,曲線C與y軸交于點(diǎn)A(0,m),過坐標(biāo)原點(diǎn)O向曲線C作切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C,若存在實(shí)數(shù)b使得曲線C在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍
(2)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數(shù)f(x)=F(3,log2(2x-x2+4)),寫出函數(shù)f(x)的定義域;
(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C,若存在實(shí)數(shù)b使得曲線C在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍
(Ⅲ)當(dāng)x,y∈N*且x<y時(shí),求證F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•汕頭二模)定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過坐標(biāo)原點(diǎn)O向曲線C1作切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值;
(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x).

查看答案和解析>>

同步練習(xí)冊答案