已知
a
=(1,2),
b
=(1,1),且向量
a
a
+m
b
垂直,則m=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:∵向量
a
=(1,2),
b
=(1,1),
a
+m
b
=(1,2)+m(1,1)=(1+m,2+m).
a
a
+m
b
垂直,
a
•(
a
+m
b
)=1+m+2(2+m)=0,
解得m=-
5
3

故答案為:-
5
3
點(diǎn)評(píng):本題考查了向量垂直與數(shù)量積的關(guān)系,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M,N分別是AB、PC的中點(diǎn)
(1)求證:MN∥平面PAD
(2)求證:平面MND⊥平面PCD
(3)求二面角N-MD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-1),
b
=(1,2),向量
c
滿足(
c
+
b
)⊥
a
,(
c
-
a
)∥
b
,則
c
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a
b
,其中向量
a
=(
2
cosx+1,
3
cosx
),
b
=(
2
cosx-1,2sinx),x∈R.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的最小正周期、對(duì)稱軸方程和對(duì)稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)容器為0.3L的水壺里灌滿一壺水,水的溫度為t1=3℃,由于散熱壺內(nèi)溫度每min下降t=0.2℃,為了保持壺內(nèi)溫度不變,可從水龍頭給它連續(xù)不斷地滴入溫度為t2=45℃的熱水,假設(shè)每滴熱水的質(zhì)量m=0.2g.問:每min應(yīng)滴入多少滴熱水才能維持壺內(nèi)水溫不變.(假設(shè)壺內(nèi)熱傳遞極快,熱水滴入后水溫很快達(dá)到一致,多余的水從壺嘴溢出,不計(jì)水壺的吸熱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=3,AC=5,BC=7,且在△ABC所在的平面內(nèi)存在一點(diǎn)O,使得(
OA
+
OB
)•
AB
=(
OB
+
OC
)•
BC
=(
OC
+
OA
)•
CA
=0成立,則
AO
BC
的值為(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(
x2
3
,x),
b
=(x,x-3),x≥-4,若
a
b
取最小值時(shí),<
a
,
b
>的值是( 。
A、
π
4
B、
π
6
C、
4
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x-1)=-f(-x+1),且當(dāng)x≤0時(shí),f(x)=x3,若對(duì)任意的x∈[t,t+2],不等式f(x+t)≥2
2
f(x)恒成立,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=n(n+4)(
2
3
n的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案