A. | (x-3)2+(y-4)2=25 | B. | (x-3)2+(y-4)2=20 | C. | (x-3)2+(y-4)2=26 | D. | (x-3)2+(y-4)2=27 |
分析 分別求圓心到三點的距離分別為5,2$\sqrt{5}$,$\sqrt{26}$,則圓的半徑為中間的那個數(shù),則可得圓的方程.
解答 解:∵圓心M(3,4),點A(-1,1),B(1,0),C(-2,3),
∴MA=$\sqrt{(3+1)^{2}+(4-1)^{2}}$=5,
MB=$\sqrt{(3-1)^{2}+(4-0)^{2}}$=2$\sqrt{5}$,
MC=$\sqrt{(3+2)^{2}+(4-3)^{2}}$=$\sqrt{26}$,
要使A,B,C三點一個在圓內(nèi),一個在圓上,一個在圓外
即使R=5
∴圓方程為(x-3)2+(y-4)2=25.
故選:A.
點評 本題考查圓的方程的求法,是基礎(chǔ)題,解題時要注意兩點間距離公式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | b>c>a | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ±$\frac{{\sqrt{5}}}{3}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | -$\frac{{\sqrt{5}}}{3}$ | D. | ±$\frac{{\sqrt{5}}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
價 格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
n-2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
小概率0.01 | 1.000 | 0.990 | 0.959 | 0.917 | 0.874 | 0.834 | 0.798 | 0.765 | 0.735 | 0.708 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com