17.成書于公元五世紀的《張邱建算經(jīng)》是中國古代數(shù)學史上的杰作,該書中記載有很多數(shù)列問題,說明古人很早就注意到了數(shù)列并且有很深的研究,從下面這首古民謠中可知一二:
南山一棵竹,竹尾風割斷,剩下三十節(jié),一節(jié)一個圈.頭節(jié)高五寸,頭圈一尺三
逐節(jié)多三分,逐圈少分三.一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是多遠?
此民謠提出的問題的答案是(  )
(注:①五寸即0.5尺.②一尺三即1.3尺.③三分即0.03尺.④分三即一分三厘,等于0.013尺.)
A.72.705尺B.61.395尺C.61.905尺D.73.995尺

分析 設從地面往長,每節(jié)竹長為a1,a2,a3,…,a30,則{an}是以a1=0.5為首項,以d′=0.03為公差的等差數(shù)列,設從地面往上,每節(jié)節(jié)圈長為b1,b2,b3,…,b30,則{bn}是以b1=1.3為首項,d=-0.013為公差的等差數(shù)列,由此能求出一蟻往上爬,遇圈則繞圈.爬到竹子頂?shù)男谐蹋?/p>

解答 解:∵每竹節(jié)間的長相差0.03尺,
設從地面往長,每節(jié)竹長為a1,a2,a3,…,a30,
∴{an}是以a1=0.5為首項,以d′=0.03為公差的等差數(shù)列,
由題意知竹節(jié)圈長,后一圏比前一圏細1分3厘,即0.013尺,
設從地面往上,每節(jié)節(jié)圈長為b1,b2,b3,…,b30,
由{bn}是以b1=1.3為首項,d=-0.013為公差的等差數(shù)列,
∴一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是:
S30=$(30×0.5+\frac{30×29}{2}×0.03)$+[30×1.3+$\frac{30×29}{2}×(-0.013)$]=61.395.
故選:B.

點評 本題考查等差數(shù)列有生產(chǎn)、生活中的實際應用,是中檔題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知a>0,b>0,若不等式$\frac{mab}{3a+b}≤a+3b$恒成立,則m的最大值為( 。
A.4B.4C.12D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知R為實數(shù)集,集合A={1,2,3,4,5},B={x|x(4-x)<0},則A∩(∁RB)={1,2,3,4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知P(x,y)是圓(x+1)2+y2=1上一點,則2x+3y的最大值為$\sqrt{13}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知y=f′(x)是函數(shù)y=f(x)的導函數(shù),若y=f′(x)的圖象如圖,則f(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分圖象如圖所示.
(Ⅰ)求f(x)的表達式;
(Ⅱ)把函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個單位后得到函數(shù)g(x)的圖象,若函數(shù)$h(x)=ax+\frac{1}{2}g(2x)-g(x)$在(-∞,+∞)單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.以橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的頂點為頂點,離心率為2的雙曲線方程( 。
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1
C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$E:\frac{x^2}{4}+{y^2}=1$的左右頂點分別為A,B,點P為橢圓上異于A,B的任意一點.
(Ⅰ)求直線PA與PB的斜率之積;
(Ⅱ)過點Q(-1,0)作與x軸不重合的直線交橢圓E于M,N兩點.問:是否存在以MN為直徑的圓經(jīng)過點A,若存在,請求出直線MN.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.定義:以原雙曲線的實軸為虛軸,虛軸為實軸的雙曲線為原雙曲線的共軛雙曲線,已知雙曲線$\frac{y^2}{4}-{x^2}=1$的共軛雙曲線為C,過點A(4,4)能做m條直線與C只有一個公共點,設這m條直線與雙曲線C的漸近線圍成的區(qū)域為G,如果點P、Q在區(qū)域G內(nèi)(包括邊界)則$|{\overrightarrow{PQ}}|$的最大值為( 。
A.10B.$4\sqrt{10}$C.17D.$2\sqrt{17}$

查看答案和解析>>

同步練習冊答案