如圖:是⊙的直徑,垂直于⊙所在的平面,PA="AC," 是圓周上不同于的任意一點(diǎn),(1) 求證:平面。(2) 求二面角 P-BC-A 的大小。

 

【答案】

(1)利用線面垂直的性質(zhì)可得線線垂直,再利用線面垂直的判定定理,可得結(jié)論;

(2)∠PCA=450

【解析】

試題分析(1)利用線面垂直的性質(zhì)可得線線垂直,再利用線面垂直的判定定理,可得結(jié)論;(2)利用二面角的求解。

因?yàn)橐驗(yàn)镻A⊥平面ABC,且BC?平面ABC,所以PA⊥BC.又△ABC中,AB是圓O的直徑,所以BC⊥AC.、又PA∩AC=A,所以BC⊥平面PAC.

(2)在第一問(wèn)的基礎(chǔ)上,由于是⊙的直徑,垂直于⊙所在的平面,PA="AC," 是圓周上不同于的任意一點(diǎn),那么可知二面角 P-BC-A 的大小450

考點(diǎn):空間圖形的位置關(guān)系

點(diǎn)評(píng):本題考查直線與平面垂直的判定定理,平面與平面垂直的判定定理,考查空間圖形的位置關(guān)系,屬于中檔題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內(nèi)接四邊形,其中是圓的直徑,,,

直底面,,分別是上的點(diǎn),且

,過(guò)點(diǎn)的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內(nèi)接四邊形,其中是圓的直徑,,

直底面,,分別是上的點(diǎn),且

,過(guò)點(diǎn)的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當(dāng)時(shí),求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案