9.在邊長為2的正方形AP1P2P3中,點B,C分別是邊P1P2,P2P3的中點,沿AB,BC,CA翻折成一個三棱錐P-ABC,使P1、P2、P3重合于點P,則三棱錐P-ABC的外接球的表面積為6π.

分析 根據(jù)題意,得折疊成的三棱錐P-ABC三條側棱PA、PB、PC兩兩互相垂直,可得三棱錐P-ABC的外接球的直徑等于以PA、PB、PC為長、寬、高的長方體的對角線長,由此結合AP=2、BP=CP=1算出外接球的半徑R=$\frac{\sqrt{6}}{2}$,結合球的表面積公式即可算出三棱錐P-ABC的外接球的表面積.

解答 解:根據(jù)題意,得三棱錐P-ABC中,AP=2,BP=CP=1
∵PA、PB、PC兩兩互相垂直,
∴三棱錐P-ABC的外接球的直徑2R=$\sqrt{A{P}^{2}+B{P}^{2}+C{P}^{2}}$=$\sqrt{6}$
可得三棱錐P-ABC的外接球的半徑為R=$\frac{\sqrt{6}}{2}$
根據(jù)球的表面積公式,得三棱錐P-ABC的外接球的表面積為
S=4πR2=4π×($\frac{\sqrt{6}}{2}$)2=6π
故答案為:6π.

點評 本題將正方形折疊成三棱錐,求三棱錐的外接球的表面積.著重考查了長方體的對角線長公式、三棱錐的外接球和球的表面積公式等知識,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.偶函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,其中△EFG是斜邊為4的等腰直角三角形(E、F是函數(shù)圖象與x軸的交點,點G在圖象上),則f(1)的值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.化簡(a+2b+c)3-(a+b)3-(b+c)3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若Sn為等差數(shù)列{an}的前n項和,且S4=4a3+2,則公差d的值為( 。
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知P為球O球面上的一點,A為OP的中點,若過點A且與OP垂直的平面截球O所得圓的面積為3π,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.三棱錐的四個面都是直角三角形,各棱長的最大值為4,則該三棱錐外接球的體積為( 。
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.$\frac{16π}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.過原點且與直線$\sqrt{6}x-\sqrt{3}y+1=0$平行的直線l被圓${x^2}+{({y-\sqrt{3}})^2}=7$所截得的弦長為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知三棱錐P-ABC內(nèi)接于球O,PA=PB=PC=2,當三棱錐P-ABC的三個側面的面積之和最大時,球O的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知三棱柱ABC-A′B′C′的6個頂點都在球O的球面上,若$AB=1,AC=\sqrt{3}$,AB⊥AC,$AA'=2\sqrt{3}$,則球O的直徑為( 。
A.2B.$\sqrt{13}$C.$\sqrt{15}$D.4

查看答案和解析>>

同步練習冊答案