4.已知直線:bx+ay=0與直線:x-2y+2=0垂直,則二次函數(shù)f(x)=ax2-bx+a的說法正確的是(  )
A.f(x)開口方向朝上B.f(x)的對稱軸為x=1C.f(x)在(-∞,-1)上遞增D.f(x)在(-∞,-1)上遞減

分析 利用直線的垂直關系,得到a,b的關系,然后求解二次函數(shù)的對稱軸判斷選項即可.

解答 解:直線:bx+ay=0與直線:x-2y+2=0垂直,
可得b=2a,
二次函數(shù)f(x)=ax2-bx+a=ax2-2ax+a,函數(shù)的對稱軸為:x=1,
故選:B.

點評 本題考查直線的垂直,二次函數(shù)的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若集合A={-1,0,1,2},B={y|y=2x+1,x∈A},則A∪B中元素的個數(shù)是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+$\frac{1}{2}$mx2-(m+1)x+1.
(1)若g(x)=f'(x),討論g(x)的單調性;
(2)若f(x)在x=1處取得極小值,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知2sinα+cosα=0,則sin2α-3cos2α-sin2α=( 。
A.-$\frac{17}{5}$B.-$\frac{17}{4}$C.-$\frac{16}{5}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若A為不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-x≤2}\end{array}\right.$表示的平面區(qū)域,則當a從-2連續(xù)變化到1時,則直線x+y=a掃過A中的那部分區(qū)域的面積為( 。
A.1B.$\frac{3}{2}$C.$\frac{3}{4}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在圓x2+y2=4內隨機取一點P(x0,y0),則${({x_0}-1)^2}+y_0^2≤1$的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{2}$=1與橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1(a>0)有相同的焦點,則a的值為( 。
A.$\sqrt{2}$B.$\sqrt{10}$C.4D.$\sqrt{34}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列命題中假命題是(  )
A.?x∈R,lgx=0B.?x∈R,sinx+cosx=$\sqrt{3}$
C.?x∈R,x2+1≥2xD.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,正方體ABCD一A1B1C1D1的棱長為2,動點E,F(xiàn)在棱A1B1上,且EF=1,動點Q在棱CD上,P是棱AD中點,R是棱DDl的中點,則以下結論:
①四面體PEFQ的體積為定值;
②異面直線PE與QF的所成角的大小為定值;
③過P點有且只有一條直線與直線BB1和C1D1都平行;
④過P點有且只有一個平面與直線BB1和C1D1都平行;
⑤過點B,P,R的平面截該正方體所得的截面是五邊形.
其中正確結論的序號是①④.

查看答案和解析>>

同步練習冊答案