【題目】不等關(guān)系已知滿足,則下列選項中一定成立的是( )

A. B. C. D.

【答案】D

【解析】分析:要判斷選項的對錯,應(yīng)判斷的正負(fù)。由,可得異號。再因為,可得,的正負(fù)不確定。對于選項A,因為,由不等式性質(zhì)可得,所以選項A對于選項B, 因為,所以,由不等式的性質(zhì)可得 ,故選項B錯;對于選項C,取特殊值,當(dāng)時, ,故選項C錯;對于選項D,因為,由指數(shù)函數(shù)的性質(zhì)可得,因為,由不等式的性質(zhì)可得。故選項D正確。

詳解因為,所以異號。

因為,所以。

對于選項A,因為,所以所以選項A;

對于選項B, 因為所以,所以 ,故選項B錯;

對于選項C,當(dāng)時, ,故選項C錯;

對于選項D,因為,所以,因為所以。故選項D正確。

故選D。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】容器中盛有5個白乒乓球和3個黃乒乓球.

(1)“從8個球中任意取出1個,取出的是白球”與“從剩下的7個球中任意取出1個,取出的還是白球”這兩個事件是否相互獨立?為什么?

(2)“從8個球中任意取出1個,取出的是白球”與“把取出的1個白球放回容器,再從容器中任意取出1個,取出的是黃球”這兩個事件是否相互獨立?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)解關(guān)于的不等式

(2)若當(dāng),恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列對幾何體結(jié)構(gòu)特征的描述,說出幾何體的名稱.

1)由八個面圍成,其中兩個面是互相平行且全等的正六邊形,其它各面都是矩形;

2)一個等腰梯形繞著兩底邊中點的連線所在的直線旋轉(zhuǎn)180°形成的封閉曲面所圍成的幾何體;

3)由五個面圍成,其中一個面是正方形,其他各面都是有一個公共頂點的全等三角形;

4)一個圓繞其一條直徑所在的直線旋轉(zhuǎn)180°形成的封閉曲面所圍成的幾何體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若函數(shù)有零點,求實數(shù)的取值范圍;

(Ⅱ)若對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三邊是連續(xù)的三個自然數(shù).

(Ⅰ求最小邊的取值范圍;

(Ⅱ是否存在這樣的,使得其最大內(nèi)角是最小內(nèi)角的兩倍?若存在,試求出這個三角形的三邊;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓

(Ⅰ)試判斷圓與圓的位置關(guān)系;

(Ⅱ)在直線上是否存在不同于的一點,使得對于圓上任意一點都有為同一常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是直線上一動點,PA、PB是圓的兩條切線,A、B為切點,若四邊形PACB面積的最小值是2,則的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

(1)若,求的周長(結(jié)果精確到0.01米);

(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積,的面積盡可能大,當(dāng)為何值時,該活動室面積最大?并求出最大面積.

查看答案和解析>>

同步練習(xí)冊答案