已知函數(shù),
(l)求函數(shù)的最小正周期;
(2)當時,求函數(shù)f(x)的單調區(qū)間。

(1);(2)單調遞增區(qū)間:;單調遞減區(qū)間:

解析試題分析:(1)利用誘導公式及二倍角公式等及將函數(shù)
化成,再利用正弦函數(shù)的周期求函數(shù)的周期;
(2)由(1)的結果知,首先由
再利用正弦函數(shù)的單調性求的單調區(qū)間.
解:(1)
=
函數(shù)的最小正周期
(2)當時,
時,函數(shù)單調遞增
時,函數(shù)單調遞減
考點:1、三角函數(shù)誘導公、二倍角公式、兩角和與差的正弦公式;2、正弦數(shù)的性質.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)(其中>0,),且f(x)的圖象在y軸右側的第一個最高點的橫坐標為
(1)求的值;
(2)如果在區(qū)間的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量
(1)若,且,求角的值;
(2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)設,且,求的值;
(2)在△ABC中,AB=1,,且△ABC的面積為,求sinA+sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的圖像經(jīng)過點,,當時,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角A、B、C的對邊分別為,已知向量且滿足.
(1)求角A的大;
(2)若試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的最小正周期及對稱軸方程;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若,bc=6,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的部分圖象如圖所示,其中點A為最高點,點B,C為圖象與軸的交點,在中,角對邊為,且滿足.

(1)求的面積;
(2)求函數(shù)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),的最大值為3,的圖像的相鄰兩對稱軸間的距離為2,在軸上的截距為2.
(1)求函數(shù)的解析式;
(2)求的單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案