【題目】設(shè)為正整數(shù),區(qū)間(其中,)同時(shí)滿足下列兩個(gè)條件:

①對(duì)任意,存在使得

②對(duì)任意,存在,使得(其中).

(Ⅰ)判斷能否等于;(結(jié)論不需要證明).

(Ⅱ)求的最小值;

(Ⅲ)研究是否存在最大值,若存在,求出的最大值;若不在在,說(shuō)明理由.

【答案】可以等于,但不能等于;(;(存在最大值,為

【解析】

)根據(jù)題意可得出結(jié)論;

)根據(jù)()中的結(jié)論得出可以等于,可得出區(qū)間的長(zhǎng)度為,結(jié)合①得出,再由,,,滿足條件①、②可得出的最小值;

)利用反證法推導(dǎo)出,進(jìn)而得出,由此得出,進(jìn)而得出,再舉例說(shuō)明成立,由此可得出正整數(shù)的最大值.

可以等于,但不能等于;

)記為區(qū)間的長(zhǎng)度,則區(qū)間的長(zhǎng)度為的長(zhǎng)度為

由①,得

又因?yàn)?/span>,,顯然滿足條件①,②.

所以的最小值為;

的最大值存在,且為

解答如下:(1)首先,證明

由②,得、、互不相同,且對(duì)于任意,

不妨設(shè)

如果,那么對(duì)于條件②,當(dāng)時(shí),不存在,使得

這與題意不符,故.

如果,那么,

這與條件②中“存在,使得(其中、、、、)”矛盾,故

所以,,,則

若存在,這與條件②中“存在,使得”矛盾,

所以

2)給出存在的例子

,其中、、,即、、、為等差數(shù)列,公差

,知,則易得,

所以、、、滿足條件①.

又公差

所以.(注:

為區(qū)間的中點(diǎn)對(duì)應(yīng)的數(shù))

所以、、、滿足條件②.

綜合(1)(2)可知的最大值存在,且為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的離心率為,左、右焦點(diǎn)分別為,,過(guò)的直線與C交于M,N兩點(diǎn),的周長(zhǎng)為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過(guò)M作與y軸垂直的直線l,點(diǎn),試問(wèn)直線與直線l交點(diǎn)的橫坐標(biāo)是否為定值?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信運(yùn)動(dòng),是由騰訊開(kāi)發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).用戶可以通過(guò)關(guān)注微信運(yùn)動(dòng)公眾號(hào)查看自己每天行走的步數(shù),同時(shí)也可以和其他用戶進(jìn)行運(yùn)動(dòng)量的或點(diǎn)贊.微信運(yùn)動(dòng)公眾號(hào)為了解用戶的一些情況,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取了100名用戶,統(tǒng)計(jì)了他們某一天的步數(shù),數(shù)據(jù)整理如下:

(萬(wàn)步)

()

5

20

50

15

5

5

1)根據(jù)表中數(shù)據(jù),在如圖所示的坐標(biāo)平面中作出其頻率分布直方圖,并在縱軸上標(biāo)明各小長(zhǎng)方形的高;

2)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取3人,求至少2人步數(shù)多于1.2萬(wàn)步的概率;

3)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取2人,其中每日走路不超過(guò)0.8萬(wàn)步的有人,超過(guò)1.2萬(wàn)步的有人,設(shè),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)有400名學(xué)生參加某項(xiàng)體育測(cè)試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:

1)若該樣本中男生有55人,試估計(jì)該學(xué)校高三年級(jí)女生總?cè)藬?shù);

2)若規(guī)定小于60分為“不及格”,從該學(xué)校高三年級(jí)學(xué)生中隨機(jī)抽取一人,估計(jì)該學(xué)生不及格的概率;

3)若規(guī)定分?jǐn)?shù)在為“良好”,為“優(yōu)秀”.用頻率估計(jì)概率,從該校高三年級(jí)隨機(jī)抽取三人,記該項(xiàng)測(cè)試分?jǐn)?shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的零點(diǎn)個(gè)數(shù);

2)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某建材商場(chǎng)國(guó)慶期間搞促銷活動(dòng),規(guī)定:如果顧客選購(gòu)物品的總金額不超過(guò)600元,則不享受任何折扣優(yōu)惠;如果顧客選購(gòu)物品的總金額超過(guò)600元,則超過(guò)600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計(jì)計(jì)算.

某人在此商場(chǎng)購(gòu)物獲得的折扣優(yōu)惠金額為30元,則他實(shí)際所付金額為____元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中國(guó)剩余定理”又稱“孫子定理”,最早可見(jiàn)于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問(wèn)物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問(wèn)題:將120202020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

同步練習(xí)冊(cè)答案