A. | 1 | B. | -$\frac{1}{2}$ | C. | -1 | D. | 0 |
分析 先構造函數,F(x)=$\frac{f(x)}{{e}^{x}}$,根據題意求出f(x)的解析式,即可得到$\frac{{x•{e^x}}}{f(x)}$=$\frac{2x}{{x}^{2}+1}$,再根據基本不等式即可求出最大值.
解答 解:令F(x)=$\frac{f(x)}{{e}^{x}}$,則F′(x)=$\frac{f'(x)-f(x)}{{e}^{x}}$=x,
則F(x)=$\frac{1}{2}$x2+c,
∴f(x)=ex($\frac{1}{2}$x2+c),
∵f(0)=$\frac{1}{2}$,
∴c=$\frac{1}{2}$,
∴f(x)=ex($\frac{1}{2}$x2+$\frac{1}{2}$),
∴$\frac{{x•{e^x}}}{f(x)}$=$\frac{2x}{{x}^{2}+1}$,
x>0,$\frac{{x•{e^x}}}{f(x)}$=$\frac{2x}{{x}^{2}+1}$=$\frac{2}{x+\frac{1}{x}}$≤1,
∴$\frac{{x•{e^x}}}{f(x)}$的最大值為1,
故選:A.
點評 本題考查了導數和函數的關系以及函數的值域問題,關鍵是構造函數和利用基本不等式求函數的值域,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(1)=14 | B. | f(1)>14 | C. | f(1)≤14 | D. | f(1)≥14 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com