19.一質(zhì)點(diǎn)做直線運(yùn)動(dòng),由始點(diǎn)經(jīng)過t秒后的距離為s=t3-t2+2t,則t=2秒時(shí)的瞬時(shí)速度為( 。
A.8m/sB.10m/sC.16m/sD.18m/s

分析 求出路程s對(duì)時(shí)間t的導(dǎo)函數(shù),求出導(dǎo)函數(shù)在t=2時(shí)的值即為t=2時(shí)的瞬時(shí)速度.

解答 解:s′=3t2-2t+2
∴s′(2)=12-4+2=10
∴t=2時(shí)的瞬時(shí)速度為10m/s.
故選:B

點(diǎn)評(píng) 導(dǎo)數(shù)在物理上的應(yīng)用:位移對(duì)時(shí)間的導(dǎo)數(shù)為物體運(yùn)動(dòng)的瞬時(shí)速度;速度對(duì)時(shí)間的導(dǎo)數(shù)為運(yùn)動(dòng)問題的加速度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.方程(x2+y2-2)$\sqrt{x-3}$=0表示的曲線是(  )
A.一個(gè)圓和一條直線B.一個(gè)圓和一條射線
C.一個(gè)圓D.一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.向邊長(zhǎng)分別為5,5,6的三角形區(qū)域內(nèi)隨機(jī)投一點(diǎn)M,則該點(diǎn)M與三角形三個(gè)頂點(diǎn)距離都大于1的概率為1-$\frac{π}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)A(3,2,0),B(2,-1,2),點(diǎn)M在x軸上,且到A,B兩點(diǎn)距離相等,則點(diǎn)M的坐標(biāo)為(2,0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓心為C的圓經(jīng)過O(0,0))和A(4,0)兩點(diǎn),線段OA的垂直平分線和圓C交于M,N兩點(diǎn),且|MN|=2$\sqrt{5}$
(1)求圓C的方程
(2)設(shè)點(diǎn)P在圓C上,試問使△POA的面積等于2的點(diǎn)P共有幾個(gè)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.有下列四個(gè)命題,
①若點(diǎn)P在橢圓$\frac{x^2}{9}+\frac{y^2}{5}$=1上,左焦點(diǎn)為F,則|PF|長(zhǎng)的取值范圍為[1,5];
②方程x=$\sqrt{{y^2}+1}$表示雙曲線的一部分;
③過點(diǎn)(0,2)的直線l與拋物線y2=4x有且只有一個(gè)公共點(diǎn),則這樣的直線l共有3條;
④函數(shù)f(x)=x3-2x2+1在(-1,2)上有最小值,也有最大值.
其中真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-2x,g(x)=$\frac{1}{2}a{x^2}$.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x),若函數(shù)h(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lg(x2+tx+2)(t為常數(shù),且-2$\sqrt{2}$<t<2$\sqrt{2}$).
(1)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的最小值(用t表示);
(2)是否存在不同的實(shí)數(shù)a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出實(shí)數(shù)t的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知α為△ABC的內(nèi)角,且tanα=-$\frac{3}{4}$,計(jì)算:
(1)$\frac{sinα+cosα}{sinα-cosα}$;
(2)sin($\frac{π}{2}$+α)-cos($\frac{π}{2}$-α).

查看答案和解析>>

同步練習(xí)冊(cè)答案