【題目】已知圓過(guò)點(diǎn),且與圓關(guān)于直線對(duì)稱.

(1)求兩圓的方程;

(2)若直線與直線平行,且截距為7,在上取一橫坐標(biāo)為的點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)為,設(shè)中點(diǎn)為.

(ⅰ)若,求的值;

(ⅱ)是否存在點(diǎn),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)(i),(ii)答案見解析.

【解析】分析:(1)設(shè)點(diǎn),由對(duì)稱性結(jié)合題意可得,由兩點(diǎn)之間距離公式可知圓的半徑,,;

(2)由題可知,

由題意可得四邊形為正方形,結(jié)合題意可得關(guān)于a的方程,解方程有.

由題意可知,由題意可得滿足題意時(shí)有,該方程無(wú)解,則不存在點(diǎn),使得.

詳解:(1)設(shè)點(diǎn),因?yàn)?/span>關(guān)于直線對(duì)稱,且,

根據(jù)直線與直線垂直,中點(diǎn)在直線上,

解得,

所以,

所以;

(2)由題可知

,,

所以四邊形為正方形,

,

,解得.

,

又∵,

,

,,

,

,整理得,

,所以方程無(wú)解,

所以不存在點(diǎn),使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問(wèn)題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個(gè)月(按30天計(jì)算)總共織布390尺,問(wèn)每天增加的數(shù)量為多少尺?該問(wèn)題的答案為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知直線l過(guò)點(diǎn)P(3,2),且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),求△AOB面積最小時(shí)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩支排球隊(duì)進(jìn)行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是 ,其余每局比賽甲隊(duì)獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)分別求甲隊(duì)3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對(duì)方得1分,求乙隊(duì)得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的焦點(diǎn)在軸上,離心率為,拋物線的焦點(diǎn)在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),點(diǎn)上,點(diǎn)上,

(1)求曲線, 的標(biāo)準(zhǔn)方程;

(2)請(qǐng)問(wèn)是否存在過(guò)拋物線的焦點(diǎn)的直線與橢圓交于不同兩點(diǎn),使得以線段為直徑的圓過(guò)原點(diǎn)?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家射擊隊(duì)的某隊(duì)員射擊一次,命中7~10環(huán)的概率如表所示:

命中環(huán)數(shù)

10環(huán)

9環(huán)

8環(huán)

7環(huán)

概率

0.32

0.28

0.18

0.12

求該射擊隊(duì)員射擊一次 求:

(1)射中9環(huán)或10環(huán)的概率;

(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an﹣1,其中n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)anbn= ,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)1 , F2分別為橢圓 + =1(a>b>0)的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連接BF2并延長(zhǎng)交橢圓于點(diǎn)A,過(guò)點(diǎn)A作x軸的垂線交橢圓于另一點(diǎn)C,連接F1C.

(1)若點(diǎn)C的坐標(biāo)為( ),且BF2= ,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)窮數(shù)列{an}由k個(gè)不同的數(shù)組成,Sn為{an}的前n項(xiàng)和.若對(duì)任意的 , 則k的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案