設(shè)O為△ABC內(nèi)一點(diǎn),且滿足
1
6
OA
+
1
3
OB
+
1
2
OC
=
0
,則△AOB與△AOC的面積之比是( 。
A、
3
2
B、
2
3
C、
3
4
D、
4
3
分析:利用向量的運(yùn)算法則:平行四邊形法則得到O是三角形AB1C1的重心,得到三角形面積的關(guān)系.
解答:精英家教網(wǎng)解:∵滿足
1
6
OA
+
1
3
OB
+
1
2
OC
=
0
,
OA
+2
OB
+3
OC
=
0
,
設(shè)2
OB
=
OB1
,3
OC
=
OC1
,如圖,
則O是三角形AB1C1的重心,
故三角形AOB1和AOC1的面積相等,
又由圖可知:
△AOB與△AOC的面積分別是三角形AOB1和AOC1的面積的一半和三分之一,
則△AOB與△AOC的面積之比是
1
2
1
3
=
3
2

故選A.
點(diǎn)評(píng):此題是個(gè)基礎(chǔ)題.本題考查向量的運(yùn)算法則:平行四邊形法則及同底、同高的三角形面積相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為△ABC內(nèi)一點(diǎn),若任意k∈R,有|
OA
-
OB
-k
BC
| ≥ |
OA
-
OC
|
,則△ABC的形狀一定是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆重慶市高一上學(xué)期期末考試數(shù)學(xué) 題型:填空題

設(shè)O為△ABC內(nèi)一點(diǎn),且k > 0),,則k的值為_(kāi)______________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)O為△ABC內(nèi)一點(diǎn),若任意k∈R,有|
OA
-
OB
-k
BC
| ≥ |
OA
-
OC
|
,則△ABC的形狀一定是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市八校聯(lián)考高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)O為△ABC內(nèi)一點(diǎn),若任意k∈R,有,則△ABC的形狀一定是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案