【題目】已知圓 的圓心為原點 ,且與直線 相切。
(1)求圓 的方程;
(2)過點 (8,6)引圓O的兩條切線 ,切點為 ,求直線 的方程.

【答案】
(1)依題意得:圓 的半徑

所以圓 的方程為 。


(2) 是圓 的兩條切線, 。 在以 為直徑的圓上。點 的坐標為 ,則線段 的中點坐標為 。

以 為直徑的圓方程為

化簡得: , 為兩圓的公共弦,

直線 的方程為 即 。


【解析】分析:本題主要考查了圓的切線方程、直線與圓的位置關系、相交弦所在直線的方程,解決問題的關鍵是(1)根據(jù)弦心距關系求得半徑即可解決問題;(2)根據(jù) 是圓 的兩條切線,得到 ,所以 在以 為直徑的圓上,根據(jù)所給條件可得一 為直徑的圓方程為 ,聯(lián)立兩圓方程可得公共弦所在直線方程,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,1]上,不等式f(x)>6x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,已知側棱底面的中點, .

(1)證明: 平面

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題P:4x﹣a2x+1≥0對x∈[﹣1,1]恒成立,命題Q:f(x)=log2(ax2﹣2x+ )的值域是R,若滿足P且Q為假,P或Q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在 軸上的圓 過點 ,圓 的方程為
(1)求圓 的方程;
(2)由圓 上的動點 向圓 作兩條切線分別交 軸于 , 兩點,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x|,g(x)=﹣|x﹣4|+m.
(1)解關于x的不等式g[f(x)]+3﹣m>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(2x)圖象的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)+2= ,當x∈(0,1]時,f(x)=x2 , 若在區(qū)間(﹣1,1]內,g(x)=f(x)﹣t(x+2)有兩個不同的零點,則實數(shù)t的取值范圍是(
A.(0, ]
B.(0, ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線AB經過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.

(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED= ,⊙O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程選講

以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,

在直角坐標系中,曲線的參數(shù)方程為是參數(shù), ),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)當時,曲線相交于、兩點,求以線段為直徑的圓的直角坐標方程.

查看答案和解析>>

同步練習冊答案