13.解不等式$\sqrt{{x}^{2}-x-6}$<x.

分析 由題意x≥0,所以利用不等式的性質(zhì),兩邊平方去根號(hào),轉(zhuǎn)化為整式不等式解之.

解答 解:由題意x≥0,所以原不等式等價(jià)于$\left\{\begin{array}{l}{{x}^{2}-x-6≥0}\\{x≥0}\\{{x}^{2}-x-6<{x}^{2}}\end{array}\right.$,解得x≥3;
所以不等式的解集為[3,+∞).

點(diǎn)評(píng) 本題考查了根式不等式的解法;關(guān)鍵是等價(jià)轉(zhuǎn)化為整式不等式解之;注意偶次根式的被開方數(shù)非負(fù)以及x 的隱含條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定義域?yàn)閰^(qū)間[0,1],求:
(1)g(x)的解析式
(2)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=1-x2,則函數(shù)$f(\frac{1}{f(2)})$的值為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)Z滿足Z•(1-2i)=5i,則復(fù)數(shù)Z在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點(diǎn)A(0,2)的圓與直線x-y-4=0相切于P(6,2),則圓的方程是( 。
A.(x-5)2+(y-3)2=18B.(x-5)2+(y-3)2=9C.(x-3)2+(y-5)2=18D.(x-3)2+(y-5)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知cosθ=$\frac{4}{5}$,θ∈(0,$\frac{π}{2}$).
(1)求cos(θ+$\frac{π}{4}$)的值;
(2)求tan2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{{{{(x+1)}^2}}}{{\sqrt{x+2}}}$的定義域是(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在數(shù)列{an}中,a1=a,a∈Z,an+1=$\left\{\begin{array}{l}{{a}_{n}^{2}-5,{a}_{n}為奇數(shù)}\\{\frac{{a}_{n}}{2},{a}_{n}為偶數(shù)}\end{array}\right.$.
(1)若a=1,求a2,a3,a4
(2)若?n∈N*,均有an+3=an成立,求滿足題意的整數(shù)a構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知XN(-1,σ2),若P(-3≤X≤-1)=0.4,則P(-3≤X≤1)=(  )
A.0.4B.0.8C.0.6D.無法計(jì)算

查看答案和解析>>

同步練習(xí)冊(cè)答案