12.已知全集U=R,集合A={x|2<x<9},B={x|-2≤x≤5}.
(1)求A∩B;B∪(∁UA);
(2)已知集合C={x|a≤x≤a+2},若C⊆∁UB,求實(shí)數(shù)a的取值范圍.

分析 (1)根據(jù)集合的基本運(yùn)算即可求A∩B,(∁UA)∪B;
(2)∁UB,求出根據(jù)C⊆∁UB,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.

解答 解:(1)全集U=R,集合A={x|2<x<9},B={x|-2≤x≤5}.
則:∁UA={x|2≥x或x≥9}
那么:A∩B={x|2<x≤5};
B∪(∁UA)={x|5≥x或x≥9}.
(2)集合C={x|a≤x≤a+2},B={x|-2≤x≤5}.
則:∁UB={x|-2>x或x>5},
∵C⊆∁UB,
∴需滿足:a+2<-2或a>5,
故得:a<-4或a>5,
所以實(shí)數(shù)a的取值范圍是(-∞,-4)∪(5,+∞).

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某商場(chǎng)飲料促銷(xiāo),規(guī)定:一次購(gòu)買(mǎi)一箱在原價(jià)48元的基礎(chǔ)上打9折,一次購(gòu)買(mǎi)兩箱可打8.5折,一次購(gòu)買(mǎi)三箱可打8折,一次購(gòu)買(mǎi)三箱以上均可享受7.5折的優(yōu)惠.若此飲料只能整箱銷(xiāo)售且每人每次限購(gòu)10箱,試用解析法寫(xiě)出顧客購(gòu)買(mǎi)的箱數(shù)x與所支付的費(fèi)用y之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.對(duì)一批電子元件進(jìn)行壽命追蹤調(diào)查,從這批產(chǎn)品中抽取N個(gè)產(chǎn)品(其中N≥200),得到頻率分布直方圖如表:
(Ⅰ)求m的值;
(Ⅱ)從頻率分布直方圖估算這批電子元件壽命的平均數(shù)、中位數(shù)的估計(jì)分別是多少?
(Ⅲ)現(xiàn)要從300~400及400~500這兩組中按照分層抽樣的方法抽取一個(gè)樣本容量為36的樣本,則在300~400及400~500這兩組分別抽多少件產(chǎn)品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.關(guān)于x的不等式ax2+ax+3<0的解集是∅,則a的取值范圍是[0,12].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1)數(shù)列{an}的前n項(xiàng)和Sn=An2+Bn(A,B是常數(shù))求證:數(shù)列{an}是等差數(shù)列
(2)數(shù)列{ bn}的前n項(xiàng)和Sn=$\frac{{{a_1}(1-{q^n})}}{1-q}$,(q≠1)求證:數(shù)列{ bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)是R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x滿足f(x)+f(x+$\frac{3}{2}$)=0,若f(1)>1,f(2)=a,則實(shí)數(shù)a的取值范圍是( 。
A.a>1B.a<-1C.a>2D.a<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={x|-1<x<2,x∈N},B={-1,0,1},則A∩B=( 。
A.{-1,0}B.{0}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.方程3-x=2+3x+1的解為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知圓(x-3)2+y2=4,圓的圓心為(3,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案