過(guò)點(diǎn)P(3,2)與雙曲線
x2
9
-
y2
4
=1有且只有一個(gè)公共點(diǎn)的直線有( 。
A、一條B、二條C、三條D、四條
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.
解答: 解:∵點(diǎn)P(3,2)與雙曲線
x2
9
-
y2
4
=1有且只有一個(gè)公共點(diǎn)的直線有2條.
第1條是斜率不存在的直線x=3,
第2條是與兩條漸近線平行的直線,
可設(shè)為2x±3y+b=0,∵直線過(guò)點(diǎn)P(3,2),
∴得出2x+3y-12=0,或2x-3y=0(舍去);
綜上,符合條件的直線只有2條.
故選:B.
點(diǎn)評(píng):本題考查了直線與雙曲線的交點(diǎn)的問(wèn)題,解題時(shí)應(yīng)靈活應(yīng)用雙曲線的漸近線,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y|y=2x-1},集合B={x|y=log3(x2-2)},則集合A∩B=( 。
A、{x|x>1}
B、{x|x<-
2
或x>
2
}
C、{x|x>
2
}
D、{x|x<-
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
x
-x+alnx(a∈R,a≠0).
(1)若a=
5
2
,求f(x)的極值;
(2)設(shè)函數(shù)g(x)=f(x)+x,求函數(shù)g(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)f(x)在x=x1和x=x2(x1<x2)時(shí)取得極值,且
f(x2)-f(x1)
x2-x1
2e
e2-1
a-2(其中e是自然對(duì)數(shù)的底數(shù)),求證:x2≥e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1 B1 C1 D1中,過(guò)AA1中點(diǎn)P作直線l,分別與異面直線BC、C1 D1相交于M、N兩點(diǎn),則線段MN的長(zhǎng)為( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合 A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},則集合C中的元素個(gè)數(shù)為( 。
A、3B、11C、8D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),橢圓過(guò)點(diǎn)(0,1)且離心率e=
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)A、B是橢圓上兩點(diǎn),且關(guān)于x軸對(duì)稱,E是橢圓上不同于A、B的一點(diǎn),且直線BE、AE分別交x軸于點(diǎn)P、Q,求證|OQ|•|OP|是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知logkx,logmx,lognx滿足關(guān)系式2logmx=logkx+lognx,(x≠1),證明:n2=(kn) logkm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
≠0,
b
≠0,且|
a
|
=|
b
|
=|
a
-
b
|
,則
a
a
+
b
所在直線的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-lnx.
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)比較(1+
1
2!
)(1+
1
3!
)…(1+
1
n!
)與e的大。╪∈N*,n>2,e是自然對(duì)數(shù)的底數(shù));
(Ⅲ)對(duì)于函數(shù)h(x)和g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,b,使得不等式h(x)≥kx+b和g(x)≤kx+b都成立,則稱直線y=kx+b是函數(shù)h(x)和g(x)的“分界線”.設(shè)函數(shù)h(x)=
1
2
x2,g(x)=e[x-1-f(x)],試問(wèn)函數(shù)h(x)和g(x)是否存在“分界線”?若存在,求出常數(shù)k,b的值.若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案