13.M(x0,y0)為圓x2+y2=a2(a>0)內(nèi)異于圓心的一點,則直線x0x+y0y-a2=0與該圓的位置關系是(  )
A.相切B.相交C.相離D.相切或相交

分析 由圓的方程找出圓心坐標與半徑,因為M為圓內(nèi)一點,所以M到圓心的距離小于圓的半徑,利用兩點間的距離公式表示出一個不等式,然后利用點到直線的距離公式表示出圓心到已知直線的距離d,根據(jù)求出的不等式即可得到d大于半徑r,得到直線與圓的位置關系是相離.

解答 解:由圓的方程得到圓心坐標為(0,0),半徑r=a,
由M為圓內(nèi)一點得到:$\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}}$<a,
則圓心到已知直線的距離d=$\frac{|-{a}^{2}|}{\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}}}$>a=r,
所以直線與圓的位置關系為:相離.
故選C.

點評 此題考查小時掌握點與圓的位置關系及直線與圓的位置關系的判斷方法,靈活運用兩點間的距離公式及點到直線的距離公式化簡求值,是一道綜合題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x\;,\;\;x≥0\\{x^2}+2x\;,\;\;x<0\end{array}\right.$.
(1)畫出y=f(x)的圖象,并寫出單調(diào)遞增區(qū)間;
(2)根據(jù)圖象討論關于x的方程f(x)=m的實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在數(shù)列{an}中,a1=1,$({n^2}+2n)({a_{n+1}}-{a_n})=1(n∈{N^*})$,則通項公式an=$\frac{7}{4}-\frac{2n+1}{2n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知直線l:xcosθ+ysinθ+2=0與圓x2+y2=4,則直線l與圓的位置關系是( 。
A.相交B.相離C.相切D.與θ的取值有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.關于函數(shù)$f(x)=4sin({2x+\frac{π}{3}})({x∈R})$,有下列說法:
①函數(shù)y=f(x)的表達式可以該寫為$y=4cos({2x-\frac{π}{6}})$;
②函數(shù)y=f(x)是以2π為最小正周期的周期函數(shù);
③函數(shù)y=f(x)的圖象關于點$({-\frac{π}{6},0})$對稱;
④函數(shù)y=f(x)的圖象關于直線$x=\frac{π}{6}$對稱;
⑤函數(shù)y=f(x)的圖象向右平移$\frac{π}{3}$個單位后得到的圖象關于原點對稱.其中正確的是①③.(填上所有你認為正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.方程log2(x-1)=2-log2(x+1)的解集為{$\sqrt{5}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)f(x)=(x2-$\frac{3}{2}$x)ex-m有三個零點,則實數(shù)m的取值范圍是( 。
A.(0,$\frac{9}{2}$e${\;}^{-\frac{3}{2}}$)B.(-$\frac{e}{2}$,0]C.($\frac{9}{2}$e${\;}^{-\frac{3}{2}}$,+∞)D.(-$\frac{e}{2}$,$\frac{9}{2}$e${\;}^{-\frac{3}{2}}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,網(wǎng)格上小正方形的邊長為1,粗實線畫出的是某空間幾何體的三視圖,則該幾何體的表面積為( 。
A.93+12$\sqrt{2}$B.97+12$\sqrt{2}$C.105+12$\sqrt{2}$D.109+12$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示(在右邊的網(wǎng)格線中,每個小正方形的邊長為1),則該幾何體的表面積為( 。
A.48B.54C.60D.64

查看答案和解析>>

同步練習冊答案