函數(shù)f(x)=2x3-3x2-12x+5在區(qū)間[0,3]上的最大值和最小值是(  )
分析:利用導(dǎo)數(shù)求得函數(shù)極值,然后與端點(diǎn)處函數(shù)值進(jìn)行比較,其中最大者為最大值,最小者為最小值.
解答:解:f′(x)=6x2-6x-12=6(x+1)(x-2),
由f′(x)>0得,2<x≤3,由f′(x)<0得,0≤x<2,
所以f(x)在x=2處取得極小值f(2)=-15,
又f(0)=5,f(3)═-4,
所以f(x)在[0,3]上的最小值為-15,最大值為5,
故選A.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值,考查學(xué)生的運(yùn)算求解能力,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3-
1
2
x2+m(m為常數(shù))的圖象上A點(diǎn)處的切線與直線x+y+3=0垂直,則點(diǎn)A的橫坐標(biāo)為( 。
A、
1
2
B、-
1
3
C、
1
2
-
1
3
D、1或
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-2x3+5x2-3x+2,則f(-3)=
110
110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=2x3-6x2+1(x∈[-2,3])的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3+mx2+(1-m)x,(x∈R).
(1)當(dāng)m=1時(shí),解不等式f′(x)>0;
(2)若曲線y=f(x)的所有切線中,切線斜率的最小值為-11,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=2x3+3x2-12x+1的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案