【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若函數(shù)上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1)答案不唯一,具體見(jiàn)解析(2

【解析】

(1) 求導(dǎo)函數(shù),對(duì)其進(jìn)行因式分解,對(duì)分成,,,幾類進(jìn)行討論,從而可確定函數(shù)的單調(diào)性與單調(diào)區(qū)間;

(2) 對(duì)分成,,,,幾類,利用函數(shù)的單調(diào)性和零點(diǎn)存在性定理,上有且只有一個(gè)零點(diǎn),求解參數(shù)范圍.

解:(1)定義域?yàn)?/span>,

(Ⅰ)當(dāng)時(shí),;

上單調(diào)遞減,上單調(diào)遞增;

(Ⅱ)當(dāng)時(shí),由,得,

i)若,則,所以上單調(diào)遞增;

ii)若,則;

,上單調(diào)遞增,上單調(diào)遞減,

iii)若,則;,

上單調(diào)遞增,上單調(diào)遞減.

2)(Ⅰ)當(dāng)時(shí),上單調(diào)遞減,上單調(diào)遞增;

時(shí),,所以上有兩個(gè)零點(diǎn);

(Ⅱ)當(dāng)時(shí),,令,又知當(dāng)時(shí),當(dāng)時(shí),,此時(shí)上有且只有一個(gè)零點(diǎn);

(Ⅲ)當(dāng)時(shí),

i)當(dāng)時(shí),由(1)知上單調(diào)遞增,,

此時(shí)上有且只有一個(gè)零點(diǎn);

ii)當(dāng)時(shí),由(1)結(jié)合的單調(diào)性,只需討論的符號(hào),

當(dāng)時(shí),,上有且只有一個(gè)零點(diǎn);

當(dāng)時(shí),上無(wú)零點(diǎn);

iii)若由(1)結(jié)合的單調(diào)性,,,此時(shí)上有且只有一個(gè)零點(diǎn).

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)面為正三角形,且面, 分別為棱的中點(diǎn).

(1)求證: 平面

2)(文科)求三棱錐的體積;

(理科)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E經(jīng)過(guò)點(diǎn),且離心率.

1)求橢圓E的方程;

2)設(shè)橢圓E的右頂點(diǎn)為A,若直線與橢圓E相交于MN兩點(diǎn)(異于A點(diǎn)),且滿足,試證明直線l經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“干支紀(jì)年法”是中國(guó)歷法自古以來(lái)就使用的紀(jì)年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸為十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥為十二地支.“干支紀(jì)年法”是以一個(gè)天干和一個(gè)地支按上述順序相配排列起來(lái),天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此類推,則2080年是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象在它們的交點(diǎn)處具有相同的切線.

1)求的解析式;

2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上,焦點(diǎn)為,圓O的直徑為

1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;

2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P,且直線l與橢圓C交于兩點(diǎn).記 的面積為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且,拋物線的通徑與橢圓的右通徑在同一直線上.

1)求橢圓與拋物線的標(biāo)準(zhǔn)方程;

2)過(guò)拋物線焦點(diǎn)且傾斜角為的直線與橢圓交于兩點(diǎn),為橢圓的左焦點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在貫徹中共中央、國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶某村戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對(duì)這戶村民的年收入情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo).將指標(biāo)按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶為絕對(duì)貧困戶,否則認(rèn)定該戶為相對(duì)貧困戶;當(dāng)時(shí),認(rèn)定該戶為亟待幫住戶”.工作組又對(duì)這戶家庭的受教育水平進(jìn)行評(píng)測(cè),家庭受教育水平記為良好不好兩種.

1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為絕對(duì)貧困戶數(shù)與受教育水平不好有關(guān):

受教育水平良好

受教育水平不好

總計(jì)

絕對(duì)貧困戶

相對(duì)貧困戶

總計(jì)

2)上級(jí)部門為了調(diào)查這個(gè)村的特困戶分布情況,在貧困指標(biāo)處于的貧困戶中,隨機(jī)選取兩戶,用表示所選兩戶中亟待幫助戶的戶數(shù),求的分布列和數(shù)學(xué)期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們]對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在1565歲的人群中隨機(jī)調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

支持“延遲退休”的人數(shù)

15

5

15

28

17

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;

45歲以下

45歲以上

總計(jì)

支持

不支持

總計(jì)

(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人

①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案