如果直線l,m與平面α、β、γ滿足β∩γ=l,,
,
,那么必有( 。
A.m//β且l⊥m | B.α//β且α⊥γ |
C.α⊥β且m//γ | D.α⊥γ且l⊥m |
∵m?α,且m⊥γ⇒α⊥γ,∵β∩γ=l,
,∴l(xiāng)⊥m.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,
,
,且
,E是PC的中點.
(1)證明:
;
(2)證明:
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)如圖,在矩形ABCD中,AB=2BC,點M在邊CD上,點F在邊AB上,且
,垂足為E,若將
沿AM折起,使點D位于
位置,連接
,
得四棱錐
.
(1)求證:
;(2)若
,直線
與平面ABCM所成角的大小為
,求直線
與平面ABCM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)如圖,四棱錐
的底面
為矩形,且
,
,
,
(Ⅰ)平面
與平面
是否垂直?并說明理由;
(Ⅱ)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖:在多面體
中,
,
,
,
。
(1)求證:
;
(2)求證:
;
(3)求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F(xiàn)為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
中,
,
,側面
為等邊三角形,
.
(Ⅰ)證明:
平面
;
(Ⅱ)求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在四棱錐
E—
ABCD中,底面
ABCD為矩形,平面
ABCD⊥平面
ABE,∠
AEB=90°,
BE=
BC,
F為
CE的中點,求證:
(1)
AE∥平面
BDF;
(2) 平面
BDF⊥平面
BCE.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知平面
∥平面
,
是
外一點,過點
的直線
與
分別交于
,過點
的直線
與
分別交于
且
,則
的長為
查看答案和解析>>