設(shè)是同時符合以下性質(zhì)的函數(shù)組成的集合:
,都有;②上是減函數(shù).
(1)判斷函數(shù)()是否屬于集合,并簡要說明理由;
(2)把(1)中你認為是集合中的一個函數(shù)記為,若不等式對任意的總成立,求實數(shù)的取值范圍.

(1),;(2).

解析試題分析:(1)對分別判斷其單調(diào)性,然后再求出其值域即可得到答案;(2)對任意的總成立,則可得,問題轉(zhuǎn)化為求函數(shù)的最大值,通過判斷其單調(diào)性即可得到最大值.
試題解析:(1)∵時是減函數(shù),的值域為
不在集合中                  3分
又∵時,,∴,      5分
上是減函數(shù),
在集合中                       7分
(2)
,  9分
上是減函數(shù),,        11分
又由已知對任意的總成立,
,因此所求的實數(shù)的取值范圍是          16分
考點:函數(shù)的單調(diào)性、值域,不等式恒成立問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求該函數(shù)的定義域和值域;(2)判斷函數(shù)的奇偶性,并加以證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

揚州某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅固性及石塊用料等因素,設(shè)計其橫斷面要求面積為平方米,且高度不低于米.記防洪堤橫斷面的腰長為(米),外周長(梯形的上底線段與兩腰長的和)為(米).

⑴求關(guān)于的函數(shù)關(guān)系式,并指出其定義域;
⑵要使防洪堤橫斷面的外周長不超過米,則其腰長應(yīng)在什么范圍內(nèi)?
⑶當防洪堤的腰長為多少米時,堤的上面與兩側(cè)面的水泥用料最。磾嗝娴耐庵荛L最小)?求此時外周長的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

的定義域為 ,值域為,則稱函數(shù)上的“四維方軍”函數(shù).
(1)設(shè)上的“四維方軍”函數(shù),求常數(shù)的值;
(2)問是否存在常數(shù)使函數(shù)是區(qū)間上的“四維方軍”函數(shù)?若存在,求出的值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)是定義域為的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,記,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)若不等式的解集為,求實數(shù)的值;
(II)在(I)的條件下,若對一切實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義域為的奇函數(shù)滿足,且當時,
(Ⅰ)求上的解析式;
(Ⅱ)當取何值時,方程上有解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1) 試判斷函數(shù)上單調(diào)性并證明你的結(jié)論;
(2) 若恒成立, 求整數(shù)的最大值;
(3) 求證:.

查看答案和解析>>

同步練習冊答案