已知點P與兩個定點O(0,0),A(-3,0)距離之比為.
(1)求點P的軌跡C方程;
(2)求過點M(2,3)且被軌跡C截得的線段長為2的直線方程.

(1)x²+y²-2x-3=0.(2)直線l的方程為3x+4y-8=0或x=1.

解析試題分析:解:(1)設(shè)點P(x,y),則依題得|MA|=2|MO|,
=2,
整理得x²+y²-2x-3=0,
∴軌跡C方程為x²+y²-2x-3=0.                  4分
(2)圓的方程可化為(x-1)²+y²=4,則:
圓心為(1,0),半徑為2,
∵直線l過點P且被圓截得的線段長為2,
∴弦心距為d==1.
設(shè)直線l的方程為y=k(x-2)+3即k(x-2)-y+3=0,
=1,解得k=.                   7分
∴此時直線的方程為y= (x-2)+3即4x-3y+1=0.
又當直線的斜率不存在時,直線的方程為x=1.經(jīng)檢驗,直線x=-4也符合題意.
∴直線l的方程為3x+4y-8=0或x=1.                   9分
考點:直線與圓的位置關(guān)系
點評:主要是考查了直線與圓的位置關(guān)系的運用,屬于中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點M(x,y)與兩個定點O (0,0),A (3,0)的距離之比為
1
2

(1)求點M軌跡C的方程;
(2)在平面內(nèi)是否存在異于點A的定點Q(a,b),使得對于軌跡C上任一點P,都有
|PQ|
|PA|
為一常數(shù).若存在,求出a,b的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面內(nèi)一點P與兩個定點F1(-
3
 , 0)
F2(
3
 , 0)
的距離的差的絕對值為2.
(Ⅰ)求點P的軌跡方程C;
(Ⅱ)設(shè)過(0,-2)的直線l與曲線C交于A,B兩點,且OA⊥OB(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•廣東模擬)已知動點P的軌跡為曲線C,且動點P到兩個定點F1(-1,0),F(xiàn)2(1,0)的距離|
PF1
|,|
PF2
|
的等差中項為
2

(1)求曲線C的方程;
(2)直線l過圓x2+y2+4y=0的圓心Q與曲線C交于M,N兩點,且
ON
OM
=0
(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆福建省高一下學期第一學段考試數(shù)學試卷(解析版) 題型:解答題

已知點P與兩個定點O(0,0),A(-3,0)距離之比為.

(1)求點P的軌跡C方程;

(2)求過點M(2,3)且被軌跡C截得的線段長為2的直線方程.

 

查看答案和解析>>

同步練習冊答案