15.已知公差不為0的等差數(shù)列{an}滿足:a1=1且a2,a5,a14成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an和前n項(xiàng)和Sn;
(2)證明不等式$\frac{3}{2}-\frac{1}{n+1}<\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}<2-\frac{1}{n}(n≥2$且n∈N*

分析 (1)設(shè)數(shù)列{an}公差為d,因?yàn)閍2,a5,a14成等比數(shù)列.可得${a_5}^2={a_2}{a_{14}}$,即 (1+4d)2=(1+d)(1+13d)解出d,利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)由(1)得 $\frac{1}{S_n}=\frac{1}{n^2}$,因?yàn)?當(dāng)n≥2時(shí),$\frac{1}{n(n+1)}<\frac{1}{n^2}<\frac{1}{n(n-1)}$.即$\frac{1}{n}-\frac{1}{n+1}<\frac{1}{n^2}<\frac{1}{n-1}-\frac{1}{n}$.即可證明.

解答 解:(1)設(shè)數(shù)列{an}公差為d,因?yàn)閍2,a5,a14成等比數(shù)列.
所以${a_5}^2={a_2}{a_{14}}$,即 (1+4d)2=(1+d)(1+13d)得3d2-6d=0又d≠0,所以d=2.
故 ${a_n}=1+2(n-1)=2n-1,{S_n}=\frac{(1+2n-1)n}{2}={n^2}$.(6分)
(2)證明:由(1)得  $\frac{1}{S_n}=\frac{1}{n^2}$,因?yàn)?nbsp;當(dāng)n≥2時(shí),$\frac{1}{n(n+1)}<\frac{1}{n^2}<\frac{1}{n(n-1)}$.
即$\frac{1}{n}-\frac{1}{n+1}<\frac{1}{n^2}<\frac{1}{n-1}-\frac{1}{n}$.
所以$1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+1}<1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+…+\frac{1}{n^2}<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n-1}-\frac{1}{n}$.
即$\frac{3}{2}-\frac{1}{n+1}<\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}<2-\frac{1}{n}$.(12分)

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、放縮方法、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知直線l的方程為3x-4y+4=0
(1)求過(guò)點(diǎn)(-2,2)且與直線l垂直的直線方程;
(2)求與直線l平行且距離為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知A(-1,0),B(-2,-3),則直線AB的斜率為(  )
A.$\frac{1}{3}$B.1C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如表提供了某廠節(jié)能降耗技術(shù)改造后,生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)
x3456
y2.5344.5
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的回歸直線方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.請(qǐng)認(rèn)真閱讀下列程序框圖,然后回答問(wèn)題,其中n0∈N.
(1)若輸入n0=0,寫(xiě)出所輸出的結(jié)果;
(2)若輸出的結(jié)果中有5,求輸入的自然數(shù)n0的所有可能的值;
(3)若輸出的結(jié)果中,只有三個(gè)自然數(shù),求輸入的自然數(shù)n0的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=log0.5(x2-ax+4a)在[2,+∞)上單調(diào)遞減,則a的取值范圍是(-2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.平面直角坐標(biāo)系中,若點(diǎn)$({a-1\;,\;\;\frac{3a+1}{a-1}})$在第三象限內(nèi),則實(shí)數(shù)a的取值范圍是$(-\frac{1}{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知復(fù)數(shù)z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$,$\overline{z}$是z的共軛復(fù)數(shù),則z•$\overline{z}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$iD.$\frac{\sqrt{3}}{4}$-$\frac{1}{4}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知在函數(shù)$f(x)=\frac{1}{3}{x^3}-2{x^2}+ax({a∈R})$的所有切線中,有且僅有一條切線l與直線y=x垂直.
(1)求a的值和切線l的方程;
(2)設(shè)曲線y=f(x)在任一點(diǎn)處的切線傾斜角為α,求α的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案