【題目】拋擲一枚質(zhì)地均勻的骰子兩次,記事件A={兩次的點數(shù)均為奇數(shù)},B={兩次的點數(shù)之和小于7},則P(B|A)=( )
A.
B.
C.
D.
【答案】D
【解析】解:由題意事件記A={兩次的點數(shù)均為奇數(shù)},包含的基本事件數(shù)是(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)共9個基本事件,在A發(fā)生的條件下,B={兩次的點數(shù)之和小于7},包含的基本事件數(shù)是(1,1),(1,3),(1,5),(3,1),(3,3 ),(5,1)共6個基本事件.∴P(B|A)=
故選:D.
此是一個條件概率模型的題,可以求出事件A包含的基本事件數(shù),與在A發(fā)生的條件下,事件B包含的基本事件數(shù),再用公式求出概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自點A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當不超過4(尾/立方米)時,的值為(千克/年);當時,是的一次函數(shù);當達到(尾/立方米)時,因缺氧等原因,的值為(千克/年).
(1)當時,求函數(shù)的表達式;
(2)當養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐中,底面是矩形,且,,平面,、分別是線段、的中點.
(1)證明:
(2)在線段上是否存在點,使得∥平面,若存在,確定點的位置;若不存在,說明理由.
(3)若與平面所成的角為,求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是 (把正確的序號都填上).
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②若函數(shù)在區(qū)間上遞增,在區(qū)間上也遞增,則函數(shù)必在上遞增;
③f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x、y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù).Ks
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且滿足bcosC+ c=a.
(1)求△ABC的內(nèi)角B的大。
(2)若△ABC的面積S= b2 , 試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2x+a,g(x)=lnx﹣2x,如果存在 ,使得對任意的 ,都有f(x1)≤g(x2)成立,則實數(shù)a的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com