9.已知某幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A.2$\sqrt{3}$+π+8B.2$\sqrt{3}$+3π+8C.$\frac{2\sqrt{3}}{3}$+π+8D.$\frac{2\sqrt{3}}{3}$+2π+8

分析 由三視圖可知:該幾何體為兩部分組成,左邊是一個(gè)圓柱的$\frac{1}{2}$,右邊是一個(gè)正三棱柱(底面為正三角形、側(cè)棱與底面垂直).即可得出.

解答 解:由三視圖可知:該幾何體為兩部分組成,左邊是一個(gè)圓柱的$\frac{1}{2}$,右邊是一個(gè)正三棱柱(底面為正三角形、側(cè)棱與底面垂直).
∴該幾何體的表面積=π×12+2$π×\frac{1}{2}×2$+2×$\frac{\sqrt{3}}{4}×{2}^{2}$+2×2×2=2$\sqrt{3}$+3π+8,
故選:B.

點(diǎn)評(píng) 本題考查了三視圖的有關(guān)計(jì)算、正三棱柱的性質(zhì)、正三角形的面積、圓柱的表面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)a、b為實(shí)數(shù),求證:$\frac{\sqrt{1+{a}^{2}}+\sqrt{1+^{2}}}{2}$≥$\sqrt{1+(\frac{a+b}{2})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.1-$\frac{1}{2}$=$\frac{1}{2}$…①,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$…②,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$…③,…
根據(jù)以上事實(shí),由歸納推理可得:
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$+$\frac{1}{7}$-$\frac{1}{8}$=$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$
當(dāng)n∈N*時(shí),1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$…+$\frac{1}{200n-1}$-$\frac{1}{200n}$=$\frac{1}{100n+1}$+…+$\frac{1}{200n-1}$+$\frac{1}{200n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$\overrightarrow a$=(4,8),$\overrightarrow b$=(x,4),且$\overrightarrow a∥\overrightarrow b$,則x的值是( 。
A.2B.-8C.-2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程是$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C的方程是ρ=4cosθ.
(1)將曲線(xiàn)C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),且|AB|=$\sqrt{14}$,求直線(xiàn)l的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若等差數(shù)列{an}的通項(xiàng)公式是an=2n+5,則此數(shù)列( 。
A.是公差為5的等差數(shù)列B.是公差為3的等差數(shù)列
C.是公差為2的等差數(shù)列D.是公差為7的等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.第12屆全國(guó)人大四次會(huì)議于2016年3月5日至3月16日在北京召開(kāi).為了搞好對(duì)外宣傳工作,會(huì)務(wù)組選聘了16名男記者和14名女記者擔(dān)任對(duì)外翻譯工作,調(diào)查發(fā)現(xiàn),男、女記者中分別有10人和6人會(huì)俄語(yǔ).
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
會(huì)俄語(yǔ)不會(huì)俄語(yǔ)總計(jì)
總計(jì)30
(2)能否在犯錯(cuò)的概率不超過(guò)0.10的前提下認(rèn)為性別與會(huì)俄語(yǔ)有關(guān)?
下面的臨界值表供參考:
 P(K2≥k)0.150.100.050.0250.0100.0050.001
  k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知各項(xiàng)為正的等比數(shù)列{an}中,a3•a7=9,則a5=( 。
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若C${\;}_{15}^{2n}$=C${\;}_{15}^{9-n}$,則n=3或6.

查看答案和解析>>

同步練習(xí)冊(cè)答案