11.[普通中學做]已知向量$\overrightarrow{a}$=(1,k),$\overrightarrow$=(2,3),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)k的值為( 。
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

分析 利用平面向量平行的坐標表示,列出方程求出實數(shù)k的值.

解答 解:向量$\overrightarrow{a}$=(1,k),$\overrightarrow$=(2,3),且$\overrightarrow{a}$∥$\overrightarrow$,
所以1×3-2k=0,
解得k=$\frac{3}{2}$.
故選:B.

點評 本題考查了平面向量平行的坐標表示與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知正四棱錐的底面邊長是3,高為$\frac{{\sqrt{17}}}{2}$,這個正四棱錐的側(cè)面積是$3\sqrt{26}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,AB、CD是⊙O的兩條弦,且AB是線段CD的中垂線,已知AB=6,CD=2$\sqrt{5}$,則線段AC的長度為( 。
A.5B.$\sqrt{35}$C.$\sqrt{30}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,平行四邊形ABCD中,點E在AB上且EB=2AE,AC與DE交于F點,求△ADF與△AFE的面積之比S△ADF:S△AFE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.(普通高中)已知關于x的二項式(x+$\frac{a}{\sqrt{x}}$)6展開式的常數(shù)項為15,則a=( 。
A.1B.±1C.2D.±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若函數(shù)f(x)=sin(ωx+φ)(ω>0)在x=π處取最大值,則( 。
A.f(x-π)一定是奇函數(shù)B.f(x-π)一定是偶函數(shù)
C.f(x+π)一定是奇函數(shù)D.f(x+π)一定是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{3}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow$|的值;
(2)設向量$\overrightarrow{p}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{q}$=$\overrightarrow{a}$-2$\overrightarrow$,求向量$\overrightarrow{p}$在$\overrightarrow{q}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若x=8,y=18,則$\frac{x+y}{\sqrt{x}-\sqrt{y}}$-$\frac{2xy}{x\sqrt{y}-y\sqrt{x}}$的值為( 。
A.-$\sqrt{2}$B.4C.$\sqrt{3}$D.9$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列命題中正確的是(  )
A.若a>b,則ac2>bc2B.若a>b,則a2>b2
C.若a>b,c>d,則ac>bdD.若a>b,c<d,則a-c>b-d

查看答案和解析>>

同步練習冊答案