試題分析:解(1)證明:∵CD⊥AD,CD⊥PA
∴CD⊥平面PAD ∴CD⊥AG,
又PD⊥AG
∴AG⊥平面PCD ……………………2分
作EF⊥PC于F,因面PEC⊥面PCD
∴EF⊥平面PCD,
∴EF∥AG
又AG
面PEC,EF
面PEC,
∴AG∥平面PEC ……………………4分
(2)由(Ⅰ)知A、E、F、G四點共面,又AE∥CD,
∴AE∥平面PCD。
∴AE∥GF。
∴四邊形AEFG為平行四邊形,∴AE=GF。 ……………………………5分
∵PA=3,AB=4,∴PD=5,AG=
,
又PA
2=PG•PD,∴PG
………………………………………………7分
又
,∴
,∴
………………………9分
(3)過E作EO⊥AC于點O,易知EO⊥平面PAC,
又EF⊥PC,∴OF⊥PC∴∠EFO即為二面角E—PC—A的平面角 …………11分
,
又EF=AG
∴
…………………14分
點評:二面角的求法是立體幾何中的一個難點。我們解決此類問題常用的方法有兩種:①綜合法,綜合法的一般步驟是:一作二說三求。②向量法,運用向量法求二面角應注意的是計算。很多同學都會應用向量法求二面角,但結果往往求不對,出現(xiàn)的問題就是計算錯誤。