在一個不透明的紙袋里裝有5個大小相同的小球,其中有1個紅球和4個黃球,規(guī)定每次從袋中任意摸出一球,若摸出的是黃球則不再放回,直到摸出紅球為止,求摸球次數(shù)的期望和方差.
    可能取的值為1,2,3,4,5·················· 1分




······················ 6分
的分布列為

1
2
3
4
5
P
0.2
0.2
0.2
0.2
0.2
由定義知:················ 10分
············· 12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一次數(shù)學(xué)考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設(shè)4名考生選做每一道題的概率均為.
(1)求其中做同一道題的概率;
(2)設(shè)這4名考生中選做第22題的學(xué)生個數(shù)為,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位在公開招收公務(wù)員考試時,筆試階段須對報考人員進行三個項目的測試.規(guī)定三項都合格者筆試通過.假定每項測試相互獨立,報考人員甲各項測試合格的概率組成一個公比為的等比數(shù)列,第一項測試合格且第二項測試也合格的概率為
(1)求報考人員甲筆試通過的概率;
(2)求報考人員甲測試合格的項數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知投資某項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是.設(shè)該項目產(chǎn)品價格在一年內(nèi)進行2次獨立的調(diào)整,記產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對該項目每投資十萬元,取0、1、2時,一年后相應(yīng)的利潤為1.6萬元、2萬元、2.4萬元.求投資該項目十萬元,一年后獲得利潤的數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本題滿分10分)2010年6月11日,第十九屆世界杯在南非拉開帷幕.比賽前,某網(wǎng)站組織球迷對巴西、西班牙、意大利、英格蘭四支奪冠熱門球隊進行競猜,每位球迷可從四支球隊中選出一支球隊,現(xiàn)有三人參與競猜
(1)若三人中每個人可以選擇任一球隊,且選擇各個球隊是等可能的,求四支球隊中恰好有兩支球隊有人選擇的概率;
(2)若三人中有一名女球迷,假設(shè)女球迷選擇巴西隊的概率為,男球迷選擇巴西隊的概率為,記x為三人中選擇巴西隊的人數(shù),求x的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
一個袋子內(nèi)裝有若干個黑球,個白球,個紅球(所有的球除顏色外其它均相同),從中任取個球,每取得一個黑球得分,每取一個白球得分,每取一個紅球得分,已知得分的概率為,用隨機變量X表示取個球的總得分.
(Ⅰ)求袋子內(nèi)黑球的個數(shù);
(Ⅱ)求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某次有獎競猜活動設(shè)有、兩組相互獨立的問題,答對問題可贏得獎金3000元,答對問題可贏得獎金6000元.規(guī)定答題順序可任選,但只有一個問題答對后才能解答下一個問題,否則中止答題,假設(shè)你答對問題、的概率依次為
(Ⅰ)若你按先的次序答題,寫出你獲得獎金的數(shù)額的分布列及期望;
(Ⅱ)你認為獲得獎金期望的大小與答題順序有關(guān)嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

17.(本小題滿分12分)
上海世博會深圳館1號作品《大芬麗莎》是由大芬村507名畫師集體創(chuàng)作的999幅油畫組合而成的世界名畫《蒙娜麗莎》,因其誕生于大芬村,因此被命名為《大芬麗莎》.某部門從參加創(chuàng)作的507名畫師中隨機抽出100名畫師,測得畫師年齡情況如下表所示.
(1)頻率分布表中的①、②位置應(yīng)填什么數(shù)據(jù)?并在答題卡中補全頻率分布直方圖(圖4),再根據(jù)頻率分布直方圖估計這507個畫師中年齡在歲的人數(shù)(結(jié)果取整數(shù));
(2)在抽出的100名畫師中按年齡再采用分層抽樣法抽取20人參加上海世博會深圳館志愿者活動,其中選取2名畫師擔(dān)任解說員工作,記這2名畫師中“年齡低于30歲”的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
分組
(單位:歲)
頻數(shù)
頻率

5
0.050


0.200

35


30
0.300

10
0.100
合計
100
1.00
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙二人進行一次圍棋比賽,約定先勝3局者獲得這次比賽的勝利,比賽結(jié)束,假設(shè)在一局中,甲獲勝的概率為0.6,乙獲勝的概率為0.4,各局比賽結(jié)果相互獨立。已知前2局中,甲、乙各勝1局。
(1)求甲獲得這次比賽勝利的概率;
(2)設(shè) 表示從第3局開始到比賽結(jié)束所進行的局數(shù),求 的分布列及數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊答案