已知變量x,y滿足約束條件
x+y≤1
x-y≤1
x≥a
,若|
y
x-2
|≤
1
2
恒成立,則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):簡單線性規(guī)劃的應(yīng)用
專題:不等式的解法及應(yīng)用
分析:利用已知條件考查約束條件表示的可行域,利用目標(biāo)函數(shù)的幾何意義求解即可.
解答: 解:易知a≤1,不等式表示的平面區(qū)域如圖所示,
設(shè)Q(2,0),平面區(qū)域內(nèi)動(dòng)點(diǎn)P(x,y),則|
y
x-2
|=|kPQ|
,

當(dāng)P是x=a與x-y=1交點(diǎn)時(shí),PQ的斜率最大,為
a-1
a-2

當(dāng)P是x=a與x+y=1交點(diǎn)時(shí),PQ的斜率最小,為
1-a
a-2

1-a
a-2
≥-
1
2
a-1
a-2
1
2
得0≤a≤2,又a≤1,所以a∈[0,1].
故答案為:[0,1].
點(diǎn)評:本題考查線性規(guī)劃的應(yīng)用,正確畫出可行域是解題的關(guān)鍵,考查轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EP⊥PB交PB于點(diǎn)F
(1)證明PA∥平面EDB;
(2)若PD=DC=2,求三棱錐A-DCE的體積;
(3)證明:PB⊥EFD平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體正視圖與側(cè)視圖相同,其正視圖與俯視圖如圖所示,且圖中的四邊形都是邊長為2的正方形,正視圖中兩條虛線互相垂直,則該幾何體的體積是( 。
A、
20
3
B、6
C、4
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知C的參數(shù)方程為
x=3cost
y=3sint
(t為參數(shù)),C在點(diǎn)(0,3)處的切線為l,則l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
x-3y+5≥0
2x-y≤0
x>0,y>0
,則z=log2x+log2y+1的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
x+2y≤4
y≥0
x+y≥1
,則z=2x-y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x+
1
2
x
,其中x∈[1,+∞).
(1)試判斷它的單調(diào)性;
(2)試求它的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前項(xiàng)和為Sn=4-an-
1
2n-2

(Ⅰ)求an+1與an的關(guān)系;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個(gè)數(shù)a=(
3
4
 -
1
3
,b=(
3
4
 -
1
4
,c=(
3
2
 -
1
4
的大小順序是( 。
A、c<a<b
B、c<b<a
C、a<b<c
D、b<a<c

查看答案和解析>>

同步練習(xí)冊答案