19.已知函數(shù)f(x)=cosωx+$\sqrt{3}$cosωx(ω>0),如果存在實數(shù)x0,使得對任意的實數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為( 。
A.$\frac{1}{4032π}$B.$\frac{1}{2016π}$C.$\frac{1}{4032}$D.$\frac{1}{2016}$

分析 由題意得區(qū)間[x0,x0+2016π]能夠包含函數(shù)的至少一個完整的單調(diào)區(qū)間,利用兩角和的余弦公式求得f(x),再根據(jù)2016π≥$\frac{1}{2}$×$\frac{2π}{ω}$,求得ω的最小值.

解答 解:由題意可得,f(x0)是函數(shù)f(x)的最小值,
f(x0+2016π)是函數(shù)f(x)的最大值;
要使結(jié)論成立,只需保證區(qū)間
[x0,x0+2016π]能夠包含函數(shù)的至少一個完整的單調(diào)區(qū)間即可;
又f(x)=cosωx+$\sqrt{3}$cosωx=($\sqrt{3}$+1)cosωx,
故2016π≥$\frac{1}{2}$×$\frac{2π}{ω}$,求得ω≥$\frac{1}{2016}$,
故ω的最小值為$\frac{1}{2016}$.
故選:D.

點評 本題主要考查了余弦函數(shù)的圖象與性質(zhì)的應用問題,屬于中檔題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-x-lna,a為常數(shù).
(1)若函數(shù)f(x)有兩個零點x1,x2,且x1<x2,求a的取值范圍;
(2)在(1)的條件下,證明:$\frac{x_1}{x_2}$的值隨a的值增大而增大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.哈六中數(shù)學組推出微信訂閱號(公眾號hl15645101785)后,受到家長和學生們的關(guān)注,為了更好的為學生和家長提供幫助,我們在某時間段在線調(diào)查了60位更關(guān)注欄目1或欄目2(2選一)的群體身份樣本得到如下列聯(lián)表,已知在樣本中關(guān)注欄目1與關(guān)注欄目2的人數(shù)比為2:1,在關(guān)注欄目1中的家長與學生人數(shù)比為5:3,在關(guān)注欄目2中的家長與學生人數(shù)比為1:3
欄目1欄目2合計
家長
學生
合計
(1)完成列聯(lián)表,并根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認為“更關(guān)注欄目1或欄目2與群體身份有關(guān)系”;
(2)如果把樣本頻率視為概率,隨機回訪兩位關(guān)注者,更關(guān)注欄目1的人數(shù)記為隨機變量X,求X的分布列和期望;
(3)由調(diào)查樣本對兩個欄目的關(guān)注度,請你為數(shù)學組教師提供建議應該更側(cè)重充實哪個欄目的內(nèi)容,并簡要說明理由.
P(K2≥x00.100.050.0250.010.0050.001
x02.7063.8415.0246.6357.87910.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年安徽六安一中高一上國慶作業(yè)二數(shù)學試卷(解析版) 題型:填空題

已知函數(shù),則的解析式是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.四棱錐P-ABCD的底面是邊長為$2\sqrt{2}$的正方形,高為1,其外接球半徑為$2\sqrt{2}$,則正方形ABCD的中心與點P之間的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,其左焦點到點P(2,1)的距離為$\sqrt{10}$.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在過(0,-2)的直線l與橢圓C相交于A,B兩點,且以AB為直徑的圓過橢圓C的右頂點,若存在,求出直線l的方程,不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導函數(shù),f(0)=1,且3f(x)=f′(x)-3,則4f(x)>f′(x)( 。
A.($\frac{ln4}{3}$,+∞)B.($\frac{ln2}{3}$,+∞)C.($\frac{\sqrt{3}}{2}$,+∞)D.($\frac{\sqrt{e}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.定義在(-1,1)上的函數(shù)f(x)=1+x-$\frac{x^2}{2}+\frac{x^3}{3}-…-\frac{{{x^{2016}}}}{2016}$,設(shè)F(x)=f(x+4),且F(x)的零點均在區(qū)間(a,b)內(nèi),其中a,b∈z,a<b,則圓x2+y2=b-a的面積的最小值為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=4t\\ y=3t-1\end{array}$(t為參數(shù)),當t=0時,曲線C1上對應的點為 P.以原點O為極點,以x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=$\frac{8cosθ}{1-cos2θ}$.
(I)求曲線C1的普通方程和曲線C2的直角坐標方程;
(Ⅱ)設(shè)曲線C1與C2的公共點為A,B,求|PA|•|PB|的值.

查看答案和解析>>

同步練習冊答案