【題目】 已知實數(shù).滿足方程,當()時,由此方程可以確定一個偶函數(shù),則拋物線的焦點到點的軌跡上點的距離最大值為_________.
【答案】
【解析】由題設條件當0≤y≤b(b∈R)時,由此方程可以確定一個偶函數(shù)y=f(x),可知方程(x-a+1)2+(y-1)2=1,關于y軸成軸對稱,故有-a+1=0,又由圓的幾何特征及確定一個偶函數(shù)y=f(x)知,y的取值范圍是[0,1],由此可以求出b的取值范圍,由此點(a,b)的軌跡求知,再由拋物線的性質求得其焦點坐標為(0,-),最大距離可求
解答:解:由題意可得圓的方程一定關于y軸對稱,故由-a+1=0,求得a=1
由圓的幾何性質知,只有當y≤1時,才能保證此圓的方程確定的函數(shù)是一個偶函數(shù),故0<b≤1
由此知點(a,b)的軌跡是一個線段,其橫坐標是1,縱坐標屬于(0,1]
又拋物線y=-x2故其焦點坐標為(0,-)
由此可以判斷出焦點F到點(a,b)的軌跡上點的距離最大距離是
故答案為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x+2cos2x+m(0≤x≤ ).
(1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
(2)若函數(shù)f(x)有兩個零點x1和x2 , 求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數(shù)g(x)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知中心在原點,離心率為的橢圓的一個焦點為圓: 的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上一點,過作兩條斜率之積為的直線, ,當直線, 都與圓相切時,求的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ,左焦點是.
(1)若左焦點與橢圓的短軸的兩個端點是正三角形的三個頂點,點在橢圓上.求橢圓的方程;
(2)過原點且斜率為的直線與(1)中的橢圓交于不同的兩點,設,求四邊形的面積取得最大值時直線的方程;
(3)過左焦點的直線交橢圓于兩點,直線交直線于點,其中是常數(shù),設, ,計算的值(用的代數(shù)式表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且().
(1)求的通項公式;
(2)設, , 是數(shù)列的前項和,求正整數(shù),使得對任意均有恒成立;
(3)設, 是數(shù)列的前項和,若對任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,正確的是( )
①兩個平面同時垂直第三個平面,則這兩個平面可能互相垂直
②方程 表示經(jīng)過第一、二、三象限的直線
③若一個平面中有4個不共線的點到另一個平面的距離相等,則這兩個平面平行
④方程可以表示經(jīng)過兩點的任意直線
A. ②③ B. ①④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (為常數(shù), 為自然對數(shù)的底數(shù)).
(Ⅰ)當時,討論函數(shù)在區(qū)間上極值點的個數(shù);
(Ⅱ)當, 時,對任意的都有成立,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(3+x)+ln(3﹣x).
(Ⅰ)求函數(shù)y=f(x)的定義域;
(Ⅱ)判斷函數(shù)y=f(x)的奇偶性;
(Ⅲ)若f(2m﹣1)<f(m),求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com