【題目】已知函數(shù),則下列判斷正確的是(

A.函數(shù)的最小正周期為,在上單調(diào)遞增

B.函數(shù)的最小正周期為,在上單調(diào)遞增

C.函數(shù)的最小正周期為,在上單調(diào)遞增

D.函數(shù)的最小正周期為,在上單調(diào)遞增

【答案】D

【解析】

利用周期函數(shù)的定義,通過(guò)取特值,結(jié)合二倍角公式求得最小正周期的可能的一系列的值,然后從小到大進(jìn)行檢驗(yàn),得到函數(shù)的最小正周期;利用二倍角的三角函數(shù)公式展開(kāi)整理,再利用三角函數(shù)的性質(zhì)和二次函數(shù)的性質(zhì)判定單調(diào)性,進(jìn)而作出判定.

設(shè)的周期,則,即,

,∴,,

,則,

當(dāng)時(shí),

,

π不是的周期,

,則,

當(dāng)時(shí),

,

不是函數(shù)f(x)的周期,

,則

當(dāng)時(shí),

,

,∴不是函數(shù)f(x)的周期,

,則,,

的周期,

的最小正周期.

關(guān)于函數(shù)的單調(diào)性:

,

上,從0遞增到1,再?gòu)?遞減到0,遞增到,再遞減到

遞減到0,再?gòu)?遞增到,再?gòu)?/span>遞減到0,再?gòu)?遞增到

上不是單調(diào)遞增函數(shù),

上,從-1單調(diào)遞增到,單調(diào)遞增到0,

單調(diào)遞減到0,∴從-3單調(diào)遞增到,

綜上所述,ABC錯(cuò)誤,D正確.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形為矩形,,E的中點(diǎn),將沿折起,連接,得到四棱錐M的中點(diǎn),與平面所成角為,在翻折過(guò)程中,下列四個(gè)命題正確的序號(hào)是________

平面;

②三棱錐的體積最大值為;

③點(diǎn)M的軌跡是圓的一部分,且;

④一定存在某個(gè)位置,使;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)同時(shí)滿足下列兩個(gè)條件:①對(duì)任意的恒有成立;②當(dāng)時(shí),.記函數(shù),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,當(dāng)x[0,1]時(shí),fx)=x,若在區(qū)間(﹣11]內(nèi),有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,又,,

1)求證:平面;

2)求與平面所成角的余弦值;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo)系,過(guò)點(diǎn)作傾斜角為)的直線交曲線、兩點(diǎn).

1)求曲線的直角坐標(biāo)方程,并寫(xiě)出直線的參數(shù)方程;

2)過(guò)點(diǎn)的另一條直線垂直,且與曲線交于,兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】冠狀病毒是目前已知RNA病毒中基因組最大的一個(gè)病毒家族,可引起人和動(dòng)物的呼吸系統(tǒng)、消化系統(tǒng)、神經(jīng)系統(tǒng)等方面的嚴(yán)重疾病.2019年底開(kāi)始,一種新型冠狀病毒COVID-19開(kāi)始肆虐全球.人感染了新型冠狀病毒后初期常見(jiàn)發(fā)熱乏力、咽痛干咳、鼻塞流涕、腹痛腹瀉等癥狀,嚴(yán)重者可致呼吸困難、臟器衰竭甚至死亡.篩查時(shí)可先通過(guò)血常規(guī)和肺部CT進(jìn)行初步判斷,若血液中白細(xì)胞、淋巴細(xì)胞有明顯減少或肺部CT有可見(jiàn)明顯磨玻璃影等病毒性肺炎感染癥狀則為疑似病例,可再通過(guò)核酸檢測(cè)做最終判斷,現(xiàn)A、BC、D、E五人均出現(xiàn)了發(fā)熱咳嗽等癥狀,且五人發(fā)病前14天因求學(xué)、出差、旅行、探親等原因均有疫區(qū)旅居史.經(jīng)過(guò)初次血液化驗(yàn)已確定其中有且僅有一人罹患新冠肺炎,其余四人只是普通流感,但因化驗(yàn)報(bào)告不慎遺失,現(xiàn)需要再次化驗(yàn)以確定五人中唯一患者的姓名,下面是兩種化驗(yàn)方案:

方案甲:逐個(gè)化驗(yàn),直到能確定患者為止;

方案乙:混合檢驗(yàn),先任取三人血樣混合在一起化驗(yàn),若混合血液化驗(yàn)結(jié)果呈陽(yáng)性則表明患者在這3人中,然后再逐個(gè)化驗(yàn),直到能確定患者為止;若混合血液化驗(yàn)結(jié)果呈陰性,則在另外2人中任選一人進(jìn)行化驗(yàn).假設(shè)在接受檢驗(yàn)的血液樣本中每份樣本是陽(yáng)性結(jié)果是等可能的,且每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是相互獨(dú)立的.

1)求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率;

2)求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車(chē)忽如一夜春風(fēng)來(lái),遍布了各級(jí)城市的大街小巷,為了解我市的市民對(duì)共享單車(chē)的滿意度,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了50人進(jìn)行分析.若得分低于60分,說(shuō)明不滿意,若得分不低于60分,說(shuō)明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1

(Ⅰ)根據(jù)莖葉圖找出40歲以上網(wǎng)友中滿意度得分的眾數(shù)和中位數(shù);

(Ⅱ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);

滿意

不滿意

合計(jì)

40歲以下

40歲以上

合計(jì)

(Ⅲ)先采用分層抽樣的方法從40歲及以下的網(wǎng)友中選取7人,再?gòu)倪@7人中隨機(jī)選出2人,將頻率視為概率,求選出的2人中至少有1人是不滿意的概率.

參考格式:,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),其中常數(shù).

1)若函數(shù)有相同的極值點(diǎn),求的值;

2)若,判斷函數(shù)圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案