3.已知三棱錐P-ABC中,PA=4,AB=AC=2$\sqrt{3}$,BC=6,PA⊥平面ABC,則此三棱錐的外接球的半徑為4.

分析 設(shè)△ABC外接圓半徑為r,設(shè)三棱錐P-ABC球半徑為R,由正弦定理,求出r,再由勾股定理得R.

解答 解:設(shè)△ABC外接圓半徑為r,設(shè)三棱錐P-ABC球半徑為R,
∵底面△ABC中,AB=AC=2$\sqrt{3}$,BC=6,
∴cos∠BAC=$\frac{12+12-36}{2×2\sqrt{3}×2\sqrt{3}}$=-$\frac{1}{2}$
∴sin∠BAC=$\frac{\sqrt{3}}{2}$
∴由正弦定理,得:2r=$\frac{6}{\frac{\sqrt{3}}{2}}$=4$\sqrt{3}$,
解得r=2$\sqrt{3}$,
設(shè)球心到平面ABC的距離為d,則由勾股定理得R2=d2+(2$\sqrt{3}$)2=(2$\sqrt{3}$)2+(4-d)2,
∴d=2,R=4,
∴此三棱錐的外接球的半徑為4.
故答案為:4.

點評 本題考查三棱錐的外接球半徑的求法,是中檔題,解題時要認真審題,注意正弦定理、勾股定理的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知邊長為3的正△ABC三個頂點都在球O的表面上,且OA與平面ABC所成的角為30°,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,如果輸入的x∈[-2,2],那么輸出的y屬于( 。
A.[5,9]B.[3,9]C.(1,9]D.(3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足an+1=$\frac{{(n+2)a_n^2-n{a_n}+n+1}}{a_n^2+1}$(n∈N+),且a1=1.
(1)求a2,a3,a4,猜測an,并用數(shù)學(xué)歸納法證明;
(2)若n≥4,試比較3an與(n-1)•2n+2n2的大小,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.此人停留期間空氣質(zhì)量優(yōu)良的天數(shù)只有1天的概率( 。
A.$\frac{1}{13}$B.$\frac{2}{13}$C.$\frac{3}{13}$D.$\frac{4}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC中,a,b,c分別是角A,B,C的對邊,且a=80,b=100,A=$\frac{π}{6}$,則此三角形是( 。
A.銳角三角形B.直角三角形
C.鈍角三角形D.銳角或鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M、N均在直線x=3上,圓弧C1的圓心是坐標(biāo)原點O,半徑為5,圓弧C2過點A(-1,0).
(1)求圓弧C2的方程;
(2)曲線C上是否存在點P,滿足PA=$\frac{{\sqrt{2}}}{2}$PO?若存在,指出有幾個這樣的點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若把英語單詞“book”的字母順序?qū)戝e了,則可能出現(xiàn)的錯誤共有11種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在報名的3名男教師和6名女教師中,選取5人參加義務(wù)獻血,要求男、女教師都有,則不同的選取方式的種數(shù)為( 。
A.60B.75C.105D.120

查看答案和解析>>

同步練習(xí)冊答案