【題目】已知數(shù)列{an}的前n項和Sn滿足Sn=2an-n.
(1)求數(shù)列{an}的通項公式;
(2)設(shè),記數(shù)列{bn}的前n項和為Tn,證明:
【答案】(1);(2)證明見解析.
【解析】
試題分析:(1)由題意得,得出,相減得到,進(jìn)而得到數(shù)列是首項為,公比為的等比數(shù)列,即可求解數(shù)列的通項公式;(2)由(1)得出,轉(zhuǎn)化為,表示出,根據(jù)放縮法即可得以證明.
試題解析:(1)因為Sn=2an-n,所以當(dāng)n=1時,S1=a1=2a1-1,
所以a1=1.又Sn+1=2an+1-n-1,得an+1=2an+1-2an-1,得an+1+1=2(an+1),
又a1+1=2,所以an+1=2n,故an=2n-1.
(2)證明:因為bn==,
所以bn-=-,所以Tn-=-(++…+)<0,
得Tn-<0.又=≤,
所以Tn-≥-()=-+>-.所以-<Tn-<0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),.證明:
(1)把寫成無窮乘積有唯一的表達(dá)式其中,為正整數(shù),滿足;
(2)是有理數(shù),當(dāng)且僅當(dāng)它的無窮乘積具有下列性質(zhì):存在,對所有的,滿足
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計,得到如下人數(shù)分布表.
購買金額(元) | ||||||
人數(shù) | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).
不少于60元 | 少于60元 | 合計 | |
男 | 40 | ||
女 | 18 | ||
合計 |
(2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15元.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.
附:參考公式和數(shù)據(jù):,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得出了如下數(shù)據(jù):
間隔時間(分鐘) | 10 | 11 | 12 | 13 | 14 | 15 |
等待人數(shù)(人) | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這六組數(shù)據(jù)中選取四組數(shù)據(jù)作線性回歸分析,然后用剩下的兩組數(shù)據(jù)進(jìn)行檢驗
(1)求從這六組數(shù)據(jù)中選取四組數(shù)據(jù)后,剩下的的兩組數(shù)據(jù)不相鄰的概率:
(2)若先取的是后面四組數(shù)據(jù),求關(guān)干的線性回歸方程;
(3)規(guī)定根據(jù)(2)中線性回歸方程預(yù)利的數(shù)據(jù)與用剩下的兩組實際數(shù)據(jù)相差不超過人,則所求出的線性回歸方程是“最佳回歸方程”,請判斷(2)中所求的是 “最佳回歸方程”嗎?為了使等候的乘客不超過人,則間隔時間設(shè)置為分鐘合適嗎?
附:對于一組組數(shù)據(jù), 其回歸直線 +的斜率和截距的最小二乘估計分別為: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某面包店推出一款新面包,每個面包的成本價為元,售價為元,該款面包當(dāng)天只出一爐(一爐至少個,至多個),當(dāng)天如果沒有售完,剩余的面包以每個元的價格處理掉,為了確定這一爐面包的個數(shù),以便利潤最大化,該店記錄了這款新面包最近天的日需求量(單位:個),整理得下表:
日需求量 | |||||
頻數(shù) |
(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個)線性相關(guān),求關(guān)于的線性回歸方程;
(2)若該店這款新面包每日出爐數(shù)設(shè)定為個
(i)求日需求量為個時的當(dāng)日利潤;
(ii)求這天的日均利潤.
相關(guān)公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.
(Ⅰ)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(Ⅱ)已知每檢測一件產(chǎn)品需要費用100元,設(shè)表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)是上的增函數(shù)求的取值范圍;
(2)若函數(shù)恰有兩個不等的極值點、,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對“延遲退休”的態(tài)度,現(xiàn)從某地市民中隨機選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:
年齡段(單位:歲) | ||||||
被調(diào)查的人數(shù) | ||||||
贊成的人數(shù) |
(1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為,求出表格中的值;
(2)若從年齡在的參與調(diào)查的市民中按照是否贊成“延遲退休”進(jìn)行分層抽樣,從中抽取10人參與某項調(diào)查,然后再從這10人中隨機抽取4人參加座談會,記這4人中贊成“延遲退休”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:
個人所得稅稅率表(調(diào)整前) | 個人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記
(2)某稅務(wù)部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調(diào)整后小紅的實際收入比調(diào)整前增加了多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com